Skip to main content
Log in

Mössbauer study of AFe2O4 (A = Mn, Fe, and Co) nanoparticles for biomedical applications

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The crystallographic and magnetic properties of AFe2O4 (A = Mn, Fe, and Co) nanoparticles have been studied for biomedical applications. The powders are prepared by the high thermal temperature decomposition method, and the structural and magnetic properties of the samples are investigated by X-ray diffraction, Vibrating sample magnetometry, and Mössbauer spectroscopy. The crystal structure of the AFe2O4 was a single-phase cubic spinel (Fd-3 m). LDH assay was performed to investigate the cytotoxicity of synthesized nanoparticles. In addition, it was confirmed that the magnetic properties did not change even though when the biodegradable polymer (poly(L-lactic acid)) was coated on MnFe2O4 nanoparticles, which seemed to be most suitable for thermal therapy, for the purpose of improving biocompatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hannon G, Tansi FL, Hilger I, Prina-Mello A (2021) The effects of localized heat on the hallmarks of cancer. Adv Ther 4:2000267

    Article  Google Scholar 

  2. Liu X, Zhang Y, Wang Y, Zhu W, Li G, Ma X, Zhang Y, Chen S, Tiwari S, Shi K, Zhang S, Fan H-M, Zhao Y-X, Liang X-J (2020) Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeutic efficacy. Theranostics 10:3793–3815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Suto M, Hirota Y, Mamiya H, Fujita A, Kasuya R, Tohji K, Jeyadevan B (2009) Heat dissipation mechanism of magnetite nanoparticles in magnetic fluid hyperthermia. J Magn Magn Mater 321:1493–1496

    Article  CAS  Google Scholar 

  4. De la Presa P, Luengo Y, Multigner M, Costo R, Morales MP, Rivero G, Hernando A (2012) Study of heating efficiency as a function of concentration size and applied field in γ-Fe2O3 nanoparticles. J Phys Chem C 116(48):25602–25610

    Article  Google Scholar 

  5. Natarajan S, Harini K, Gajula GP, Sarmento B, Neves-Petersen MT, Thiagarajan V (2019) Multifunctional magnetic iron oxide nanoparticles: diverse synthetic approaches, surface modifications, cytotoxicity towards biomedical and industrial applications. BMC Materials 1:1–22

    Article  Google Scholar 

  6. Ebrahimi M, Raeisi Shahraki R, Seyyed Ebrahimi SA, Masoudpanah SM (2014) Magnetic properties of zinc ferrite nanoparticles synthesized by coprecipitation method. J Superconduct Novel Magnet 27(6):1587–1592

    Article  CAS  Google Scholar 

  7. Chen D-H, He X-R (2001) Synthesis of nickel ferrite nanoparticles by sol-gel method. Mater Res Bull 36:1369–1377

    Article  CAS  Google Scholar 

  8. Li J, Yuan H, Li G, Liu Y, Leng J (2010) Cation distribution dependence of magnetic properties of sol–gel prepared MnFe2O4 spinel ferrite nanoparticles. J Magn Magn Mater 322:3396–3400

    Article  CAS  Google Scholar 

  9. Bhagwat VR, Humbe AV, More SD, Jadhav KM (2019) Sol-gel auto combustion synthesis and characterizations of cobalt ferrite nanoparticles: different fuels approach. Mater Sci Eng, B 248:14388

    Article  Google Scholar 

  10. Fayazzadeh S, Khodaei M, Arani M, Mahdavi SR, Nizamov T, Majouga A (2020) Magnetic properties and magnetic hyperthermia of cobalt ferrite nanoparticles synthesized by hydrothermal method. J Supercond Novel Magn 33:2227–2233

    Article  CAS  Google Scholar 

  11. Kim HJ, Hyun SW, Kim SH, Choi H (2021) Mn–Zn ferrite nanoparticles for application in magnetic hyperthermia. J Radioanal Nucl Chem 330:445–454

    Article  CAS  Google Scholar 

  12. Galasso FS (1970) Structure and properties of inorganic solids. Pergamon Press Inc, New York

    Google Scholar 

  13. Hargreaves JSJ (2016) Some considerations related to the use of the Scherrer equation in powder X-ray diffraction as applied to heterogeneous catalysts. Catal Struct Reactiv 2:33–37

    Article  CAS  Google Scholar 

  14. Fuentes-García JA, Diaz-Cano AI, Guillen-Cervantes A, Santoyo-Salazar J (2018) Magnetic domain interactions of Fe3O4 nanoparticles embedded in a SiO2 matrix. Sci Rep 8:5096

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lee JG, Park JY, Oh YJ, Kim CS (1998) Magnetic properties of CoFe 2 O 4 thin films prepared by a sol-gel method. J Appl Phys 84(5):2801–2804

    Article  CAS  Google Scholar 

  16. Islam K, Haque M, Kumar A, Hoq A, Hyder F, Hoque SM (2020) Manganese ferrite nanoparticles (MnFe2O4): size dependence for hyperthermia and negative/positive contrast enhancement in MRI. Nanomaterials 10:2297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Curiale J, Granada M, Troiani HE, Sánchez RD, Leyva AG, Levy P, Samwer K (2009) Magnetic dead layer in ferromagnetic manganite nanoparticles. Appl Phys Lett 95:043106

    Article  Google Scholar 

  18. Feng J, Mao J, Wen X, Tu M (2011) Ultrasonic-assisted in situ synthesis and characterization of superparamagnetic Fe3O4 nanoparticles. J Alloy Compd 509:9093–9097

    Article  CAS  Google Scholar 

  19. Boustani K, Shayesteh SF, Salouti M, Jafari A, Shal AA (2018) Synthesis characterisation and potential biomedical applications of magnetic core–shell structures: carbon–dextran–SiO2–and ZnO-coated Fe3O4 nanoparticles. IET Nanobiotechnol 12:78–86

    Article  Google Scholar 

  20. Singhal S, Chandra K (2007) Cation distribution and magnetic properties in chromium-substituted nickel ferrites prepared using aerosol route. J Solid State Chem 180:296–300

    Article  CAS  Google Scholar 

  21. Jordan A, Scholz R, Wust P, Fähling H, Felix R (1999) Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J Magn Magn Mater 201:413–419

    Article  CAS  Google Scholar 

  22. Kim CS, Yi YS, Park KT, Namgung H, Lee JG (1999) Growth of ultrafine Co–Mn ferrite and magnetic properties by a sol–gel method. J Appl Phys 85(8):5223–5225

    Article  CAS  Google Scholar 

  23. Kim WC, Yi YS, An SY, Lee SQ, Ji SH, Kim CS (2001) Atomic migration in Co0.9Mn0.1Fe2O4 prepared by a sol-gel method. Mater Sci Forum 373–376:757–760

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Konyang University Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Baek Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, H.H., Kim, C.S., Moon, J.H. et al. Mössbauer study of AFe2O4 (A = Mn, Fe, and Co) nanoparticles for biomedical applications. J Radioanal Nucl Chem 332, 5127–5133 (2023). https://doi.org/10.1007/s10967-023-08987-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08987-1

Keywords

Navigation