Skip to main content
Log in

Selective removal of cesium by magnetic biochar functionalized with Prussian blue in aqueous solution

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Magnetic biochar functionalized with Prussian blue (MBC-PB) was synthesized as an effective and economical adsorbent for removing cesium from aqueous solutions. Its physicochemical properties were characterized and cesium adsorption experiments were conducted. The cesium adsorption reaction was mainly physisorption and exothermic. MBC-PB had a maximum Cs capacity of 52.63 mg/g and adsorption equilibrium was reached within 1 h. Its removal efficiency was highest at pH 8 and it also effectively removed cesium coexisting with Na with a high distribution constant. These results suggest that MBC-PB has potential for use in actual Cs contaminated aqueous environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Koo Y-H, Yang Y-S, Song K-W (2014) Radioactivity release from the Fukushima accident and its consequences: a review. Prog Nucl Energy 74:61–70

    Article  CAS  Google Scholar 

  2. Miura H, Kurihara Y, Yamamoto M et al (2020) Characterization of two types of cesium-bearing microparticles emitted from the Fukushima accident via multiple synchrotron radiation analyses. Sci Rep 10:11421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ashraf MA, Akib S, MohdJ M, Yusoff I, Balkhair KS (2014) Cesium-137: radio-chemistry, fate, and transport, remediation, and future concerns. Crit Rev Environ Sci Technol 44:1740–1793

    Article  CAS  Google Scholar 

  4. Savino F, Pugliese M, Quarto M, Adamo P, Loffredo F, De Cicco F, Roca V (2017) Thirty years after chernobyl: long-term determination of 137Cs effective half-life in the lichen Stereocaulon vesuvianum. J Environ Radioact 172:201–206

    Article  CAS  PubMed  Google Scholar 

  5. Awual MdR, Yaita T, Taguchi T, Shiwaku H, Suzuki S, Okamoto Y (2014) Selective cesium removal from radioactive liquid waste by crown ether immobilized new class conjugate adsorbent. J Hazard Mater 278:227–235

    Article  CAS  PubMed  Google Scholar 

  6. Liu X, Chen G-R, Lee D-J, Kawamoto T, Tanaka H, Chen M-L, Luo Y-K (2014) Adsorption removal of cesium from drinking waters: A mini review on use of biosorbents and other adsorbents. Biores Technol 160:142–149

    Article  CAS  Google Scholar 

  7. Shamim MA, Zia H, Zeeshan M, Khan MY, Shahid M (2022) Metal organic frameworks (MOFs) as a cutting-edge tool for the selective detection and rapid removal of heavy metal ions from water: Recent progress. J Environ Chem Eng 10:106991

    Article  CAS  Google Scholar 

  8. Kadam AA, Jang J, Lee DS (2016) Facile synthesis of pectin-stabilized magnetic graphene oxide Prussian blue nanocomposites for selective cesium removal from aqueous solution. Biores Technol 216:391–398

    Article  CAS  Google Scholar 

  9. Busquets MA, Estelrich J (2020) Prussian blue nanoparticles: synthesis, surface modification, and biomedical applications. Drug Discov Today 25:1431–1443

    Article  CAS  PubMed  Google Scholar 

  10. López YC, Ortega GA, Reguera E (2022) Microporous prussian blue analogs and their application for environmental remediation: a deeper look from the structure-property-functionality perspective. Microporous Mesoporous Mater 333:111755

    Article  Google Scholar 

  11. Kang S-M, Rethinasabapathy M, Hwang SK, Lee G-W, Jang S-C, Kwak CH, Choe S-R, Huh YS (2018) Microfluidic generation of Prussian blue-laden magnetic micro-adsorbents for cesium removal. Chem Eng J 341:218–226

    Article  CAS  Google Scholar 

  12. Faustino PJ, Yang Y, Progar JJ et al (2008) Quantitative determination of cesium binding to ferric hexacyanoferrate: Prussian blue. J Pharm Biomed Anal 47:114–125

    Article  CAS  PubMed  Google Scholar 

  13. Hornok V, Dékány I (2007) Synthesis and stabilization of Prussian blue nanoparticles and application for sensors. J Colloid Interface Sci 309:176–182

    Article  CAS  PubMed  Google Scholar 

  14. Qian J, Ma J, He W, Hua D (2015) Facile synthesis of prussian blue derivate-modified mesoporous material via photoinitiated thiol-ene click reaction for cesium adsorption. Chem Asian J 10:1738–1744

    Article  CAS  PubMed  Google Scholar 

  15. Yasutaka T, Kawamoto T, Kawabe Y, Sato T, Sato M, Suzuki Y, Nakamura K, Komai T (2013) Rapid measurement of radiocesium in water using a Prussian blue impregnated nonwoven fabric. J Nucl Sci Technol 50:674–681

    Article  CAS  Google Scholar 

  16. Wang J-G, Ren L, Hou Z, Shao M (2020) Flexible reduced graphene oxide/prussian blue films for hybrid supercapacitors. Chem Eng J 397:125521

    Article  CAS  Google Scholar 

  17. Zhang Y, Sun X, Zhu L, Shen H, Jia N (2011) Electrochemical sensing based on graphene oxide/Prussian blue hybrid film modified electrode. Electrochim Acta 56:1239–1245

    Article  CAS  Google Scholar 

  18. Kim B, Oh D, Kang S, Kim Y, Kim S, Chung Y, Seo Y, Hwang Y (2019) Reformation of the surface of powdered activated carbon (PAC) using covalent organic polymers (COPs) and synthesis of a Prussian blue impregnated adsorbent for the decontamination of radioactive cesium. J Alloy Compd 785:46–52

    Article  CAS  Google Scholar 

  19. Seo Y, Hwang Y (2021) Prussian blue immobilized on covalent organic polymer-grafted granular activated carbon for cesium adsorption from water. J Environ Chem Eng 9:105950

    Article  CAS  Google Scholar 

  20. Darder M, González-Alfaro Y, Aranda P, Ruiz-Hitzky E (2014) Silicate-based multifunctional nanostructured materials with magnetite and Prussian blue: application to cesium uptake. RSC Adv 4:35415–35421

    Article  CAS  Google Scholar 

  21. Novel magnetic functionalities of Prussian blue analogs - Dalton Transactions (RSC Publishing) https://doi.org/10.1039/C0DT01829E. Accessed 2 Apr 2023

  22. Rauwel P, Rauwel E (2019) Towards the extraction of radioactive cesium-137 from water via graphene/CNT and nanostructured prussian blue hybrid nanocomposites: a review. Nanomaterials 9:682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ding D, Zhao Y, Yang S, Shi W, Zhang Z, Lei Z, Yang Y (2013) Adsorption of cesium from aqueous solution using agricultural residue – walnut shell: equilibrium, kinetic and thermodynamic modeling studies. Water Res 47:2563–2571

    Article  CAS  PubMed  Google Scholar 

  24. Li Z, Zhang Z, Cheng J, Li Q, Xie B, Li Y, Yang S (2022) Stabilization of Prussian blue analogues using clay minerals for selective removal of cesium. J Mol Liq 345:117823

    Article  CAS  Google Scholar 

  25. Tan X, Liu Y, Gu Y, Xu Y, Zeng G, Hu X, Liu S, Wang X, Liu S, Li J (2016) Biochar-based nano-composites for the decontamination of wastewater: a review. Biores Technol 212:318–333

    Article  CAS  Google Scholar 

  26. Mukherjee A, Zimmerman AR, Harris W (2011) Surface chemistry variations among a series of laboratory-produced biochars. Geoderma 163:247–255

    Article  CAS  Google Scholar 

  27. Biochar Surface Oxygenation by Ozonization for Super High Cation Exchange Capacity | ACS Sustainable Chemistry & Engineering. https://doi.org/10.1021/acssuschemeng.9b03536. Accessed 2 Apr 2023

  28. Tan X, Liu Y, Zeng G, Wang X, Hu X, Gu Y, Yang Z (2015) Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 125:70–85

    Article  CAS  PubMed  Google Scholar 

  29. Qian K, Kumar A, Zhang H, Bellmer D, Huhnke R (2015) Recent advances in utilization of biochar. Renew Sustain Energy Rev 42:1055–1064

    Article  CAS  Google Scholar 

  30. Wang J, Wang S (2019) Preparation, modification and environmental application of biochar: a review. J Clean Prod 227:1002–1022

    Article  CAS  Google Scholar 

  31. Zhang F, Wang X, Xionghui J, Ma L (2016) Efficient arsenate removal by magnetite-modified water hyacinth biochar. Environ Pollut 216:575–583

    Article  CAS  PubMed  Google Scholar 

  32. Hu X, Xu J, Wu M, Xing J, Bi W, Wang K, Ma J, Liu X (2017) Effects of biomass pre-pyrolysis and pyrolysis temperature on magnetic biochar properties. J Anal Appl Pyrol 127:196–202

    Article  CAS  Google Scholar 

  33. Hao Z, Wang C, Yan Z, Jiang H, Xu H (2018) Magnetic particles modification of coconut shell-derived activated carbon and biochar for effective removal of phenol from water. Chemosphere 211:962–969

    Article  CAS  PubMed  Google Scholar 

  34. Rama Chandraiah M (2016) Facile synthesis of zero valent iron magnetic biochar composites for Pb(II) removal from the aqueous medium. Alex Eng J 55:619–625

    Article  Google Scholar 

  35. Zhu S, Huang X, Wang D, Wang L, Ma F (2018) Enhanced hexavalent chromium removal performance and stabilization by magnetic iron nanoparticles assisted biochar in aqueous solution: mechanisms and application potential. Chemosphere 207:50–59

    Article  CAS  PubMed  Google Scholar 

  36. Yi Y, Huang Z, Lu B, Xian J, Tsang EP, Cheng W, Fang J, Fang Z (2020) Magnetic biochar for environmental remediation: a review. Biores Technol 298:122468

    Article  CAS  Google Scholar 

  37. Qu J, Tian X, Zhang X, Yao J, Xue J, Li K, Zhang B, Wang L, Zhang Y (2022) Free radicals-triggered reductive and oxidative degradation of highly chlorinated compounds via regulation of heat-activated persulfate by low-molecular-weight organic acids. Appl Catal B 310:121359

    Article  CAS  Google Scholar 

  38. Qu J, Shi J, Wang Y et al (2022) Applications of functionalized magnetic biochar in environmental remediation: a review. J Hazard Mater 434:128841

    Article  CAS  PubMed  Google Scholar 

  39. Bardestani R, Patience GS, Kaliaguine S (2019) Experimental methods in chemical engineering: specific surface area and pore size distribution measurements—BET, BJH, and DFT. Can J Chem Eng 97:2781–2791

    Article  CAS  Google Scholar 

  40. Ding Z, Zhang F, Sun N, Chi J (2019) Sorption of polycyclic aromatic hydrocarbons by biochars of wheat straw with different pyrolysis temperatures. IOP Conf Ser Earth Environ Sci 237:052008

    Article  Google Scholar 

  41. Le QTN, Lee HH, Hwang I (2023) Evaluation of the use of biochar to stabilize polycyclic aromatic hydrocarbons and phthalates in sediment. Environ Pollut 317:120644

    Article  CAS  PubMed  Google Scholar 

  42. Pinewood sawdust biochar as an effective biosorbent for PAHs removal from wastewater | SpringerLink. https://doi.org/10.1007/s13399-021-02181-7. Accessed 2 Apr 2023

  43. Reguyal F, Sarmah AK, Gao W (2017) Synthesis of magnetic biochar from pine sawdust via oxidative hydrolysis of FeCl2 for the removal sulfamethoxazole from aqueous solution. J Hazard Mater 321:868–878

    Article  CAS  PubMed  Google Scholar 

  44. Wang H, Liu Y, Ifthikar J, Shi L, Khan A, Chen Z, Chen Z (2018) Towards a better understanding on mercury adsorption by magnetic bio-adsorbents with γ-Fe2O3 from pinewood sawdust derived hydrochar: Influence of atmosphere in heat treatment. Biores Technol 256:269–276

    Article  CAS  Google Scholar 

  45. Han H, Song P, Cai Z, Dong W, Khan A, Yang K, Fang Y, Liu P, Mašek O, Li X (2022) Immobilizing chromate reductase NfoR on magnetic biochar reduced Cr(VI) in copper-containing wastewater. J Clean Prod 361:132118

    Article  CAS  Google Scholar 

  46. Zhong Y, Chen C, Liu S, Lu C, Liu D, Pan Y, Sakiyama H, Muddassir M, Liu J (2021) A new magnetic adsorbent of eggshell-zeolitic imidazolate framework for highly efficient removal of norfloxacin. Dalton Trans 50:18016–18026

    Article  CAS  PubMed  Google Scholar 

  47. Reddy DHK, Lee S-M (2013) Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions. Adv Coll Interface Sci 201–202:68–93

    Article  Google Scholar 

  48. Zhou Y, Xu N, Tian K, Qing T, Hao Y, Liang P, Li M (2022) Nitrilotriacetic acid modified magnetic Prussian blue for efficient removal of cadmium from wastewater. Appl Surf Sci 600:154102

    Article  CAS  Google Scholar 

  49. Seema H (2020) Novel self assembled magnetic Prussian blue graphene based aerogel for highly selective removal of radioactive cesium in water. Arab J Chem 13:4417–4424

    Article  CAS  Google Scholar 

  50. Iwaki M, Yakovlev G, Hirst J, Osyczka A, Dutton PL, Marshall D, Rich PR (2005) Direct observation of redox-linked histidine protonation changes in the iron−sulfur protein of the cytochrome bc1 complex by ATR-FTIR spectroscopy. Biochemistry 44:4230–4237

    Article  CAS  PubMed  Google Scholar 

  51. Zhang H, Qi J, Liu F, Wang Z, Ma X, He D (2022) One-pot synthesis of magnetic Prussian blue for the highly selective removal of thallium(I) from wastewater: Mechanism and implications. J Hazard Mater 423:126972

    Article  CAS  PubMed  Google Scholar 

  52. López YC, Ortega GA, Martínez MA, Reguera E (2021) Magnetic Prussian Blue derivative like absorbent cages for an efficient thallium removal. J Clean Prod 283:124587

    Article  Google Scholar 

  53. Chang L, Chang S, Chen W, Han W, Li Z, Zhang Z, Dai Y, Chen D (2016) Facile one-pot synthesis of magnetic Prussian blue core/shell nanoparticles for radioactive cesium removal. RSC Adv 6:96223–96228

    Article  CAS  Google Scholar 

  54. Zhou X, Zhou J, Liu Y, Guo J, Ren J, Zhou F (2018) Preparation of iminodiacetic acid-modified magnetic biochar by carbonization, magnetization and functional modification for Cd(II) removal in water. Fuel 233:469–479

    Article  CAS  Google Scholar 

  55. Maneechakr P, Mongkollertlop S (2020) Investigation on adsorption behaviors of heavy metal ions (Cd2+, Cr3+, Hg2+ and Pb2+) through low-cost/active manganese dioxide-modified magnetic biochar derived from palm kernel cake residue. J Environ Chem Eng 8:104467

    Article  CAS  Google Scholar 

  56. Khan A, Huo Y, Qu Z, Liu Y, Wang Z, Chen Y, Huo M (2021) A facile calcination conversion of groundwater treatment sludge (GTS) as magnetic adsorbent for oxytetracycline adsorption. Sci Rep 11:5276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu J, Yu Y, Zhu S, Yang J, Song J, Fan W, Yu H, Bian D, Huo M (2018) Synthesis and characterization of a magnetic adsorbent from negatively-valued iron mud for methylene blue adsorption. PLoS ONE 13:e0191229

    Article  PubMed  PubMed Central  Google Scholar 

  58. Nossol E, Nossol ABS, Abdelhamid ME, Martin LL, Zarbin AJG, Bond AM (2014) Mechanistic insights gained by monitoring carbon nanotube/prussian blue nanocomposite formation with in situ electrochemically based techniques. J Phys Chem C 118:13157–13167

    Article  CAS  Google Scholar 

  59. Liu Y (2006) Some consideration on the Langmuir isotherm equation. Colloids Surf, A 274:34–36

    Article  CAS  Google Scholar 

  60. Proctor A, Toro-Vazquez JF (1996) The Freundlich isotherm in studying adsorption in oil processing. J Am Oil Chem Soc 73:1627–1633

    Article  CAS  Google Scholar 

  61. Dada O, Olalekan A, Olatunya A, Dada AO (2012) Langmuir, freundlich, temkin and dubinin-radushkevich isotherms studies of equilibrium sorption of Zn 2+ unto phosphoric acid modified rice husk. J Appl Chem 3:38–45

    Google Scholar 

  62. Gritti F, Guiochon G (2010) Comparison between heterogeneous multi-Langmuir and homogeneous electrostatically modified Langmuir models in accounting for the adsorption of small organic ions in reversed-phase liquid chromatography. J Chromatogr A 1217:5584–5594

    Article  CAS  PubMed  Google Scholar 

  63. Hamdaoui O, Naffrechoux E (2007) Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon: Part I. Two-parameter models and equations allowing determination of thermodynamic parameters. J Hazard Mater 147:381–394

    Article  CAS  PubMed  Google Scholar 

  64. Johnson RD, Arnold FH (1995) The temkin isotherm describes heterogeneous protein adsorption. Biochim Biophys Acta (BBA) Protein Struct Mol Enzymol 1247:293–297

    Article  Google Scholar 

  65. Hasan MdN, Shenashen MA, Hasan MdM, Znad H, Awual MdR (2021) Assessing of cesium removal from wastewater using functionalized wood cellulosic adsorbent. Chemosphere 270:128668

    Article  CAS  PubMed  Google Scholar 

  66. Khandaker S, Toyohara Y, Saha GC, Awual MdR, Kuba T (2020) Development of synthetic zeolites from bio-slag for cesium adsorption: kinetic, isotherm and thermodynamic studies. J Water Process Eng 33:101055

    Article  Google Scholar 

  67. Hassan MR, Aly MI (2020) Adsorptive removal of cesium ions from aqueous solutions using synthesized Prussian blue/magnetic cobalt ferrite nanoparticles. Part Sci Technol 38:236–246

    Article  CAS  Google Scholar 

  68. Tang X, Wang S, Zhang Z et al (2022) Graphene oxide/chitosan/potassium copper hexacyanoferrate(II) composite aerogel for efficient removal of cesium. Chem Eng J 444:136397

    Article  CAS  Google Scholar 

  69. Tao Q, Zhang X, Huang D, Huang G, Fan J, Peng H, Dai Y, Prabaharan K (2019) Copper hexacyanoferrate nanoparticle-decorated biochar produced from pomelo peel for cesium removal from aqueous solution. J Radioanal Nucl Chem 322:791–799

    Article  CAS  Google Scholar 

  70. Simonin J-P (2016) On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem Eng J 300:254–263

    Article  CAS  Google Scholar 

  71. Wu F-C, Tseng R-L, Juang R-S (2009) Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chem Eng J 153:1–8

    Article  CAS  Google Scholar 

  72. Alamudy HA, Cho K (2018) Selective adsorption of cesium from an aqueous solution by a montmorillonite-prussian blue hybrid. Chem Eng J 349:595–602

    Article  CAS  Google Scholar 

  73. Vipin AK, Hu B, Fugetsu B (2013) Prussian blue caged in alginate/calcium beads as adsorbents for removal of cesium ions from contaminated water. J Hazard Mater 258–259:93–101

    Article  PubMed  Google Scholar 

  74. Shin J, Lee Y-G, Kwak J, Kim S, Lee S-H, Park Y, Lee S-D, Chon K (2021) Adsorption of radioactive strontium by pristine and magnetic biochars derived from spent coffee grounds. J Environ Chem Eng 9:105119

    Article  CAS  Google Scholar 

  75. Palansooriya KN, Yoon I-H, Kim S-M, Wang C-H, Kwon H, Lee S-H, Igalavithana AD, Mukhopadhyay R, Sarkar B, Ok YS (2022) Designer biochar with enhanced functionality for efficient removal of radioactive cesium and strontium from water. Environ Res 214:114072

    Article  CAS  PubMed  Google Scholar 

  76. Goswami R, Dey AK (2022) Use of anionic surfactant-modified activated carbon for efficient adsorptive removal of crystal violet dye. Adsorpt Sci Technol 2022:e2357242

    Article  Google Scholar 

  77. Jang J, Lee DS (2016) Magnetic Prussian blue nanocomposites for effective cesium removal from aqueous solution. Ind Eng Chem Res 55:3852–3860

    Article  CAS  Google Scholar 

  78. Yang H, Sun L, Zhai J, Li H, Zhao Y, Yu H (2014) In situ controllable synthesis of magnetic Prussian blue/graphene oxide nanocomposites for removal of radioactive cesium in water. J Mater Chem A 2:326–332

    Article  CAS  Google Scholar 

  79. Foo KY, Hameed B (2011) An overview of dyes removal via activated carbon adsorption process. Desalin Water Treat 19:255–274

    Article  Google Scholar 

  80. Lima EC, Gomes AA, Tran HN (2020) Comparison of the nonlinear and linear forms of the van’t Hoff equation for calculation of adsorption thermodynamic parameters (∆S° and ∆H°). J Mol Liq 311:113315

    Article  CAS  Google Scholar 

  81. Zhang L, Sellaoui L, Franco D, Dotto GL, Bajahzar A, Belmabrouk H, Bonilla-Petriciolet A, Oliveira MLS, Li Z (2020) Adsorption of dyes brilliant blue, sunset yellow and tartrazine from aqueous solution on chitosan: Analytical interpretation via multilayer statistical physics model. Chem Eng J 382:122952

    Article  CAS  Google Scholar 

  82. Alshabanat M, Alsenani G, Almufarij R (2013) Removal of crystal violet dye from aqueous solutions onto date palm fiber by adsorption technique. J Chem 2013:e210239

    Article  Google Scholar 

  83. Jassim RZ, Al-Badri AS (2019) Mineral resources and occurrences of sodium chloride in iraq: an overview

  84. Gaubert E, Barnier H, Nicod L, Favre-Reguillon A, Foos J, Guy A, Bardot C, Lemaire M (1997) Selective cesium removal from a sodium nitrate aqueous medium by nanofiltration—complexation. Sep Sci Technol 32:2309–2320

    Article  CAS  Google Scholar 

  85. Wang W, Qi M, Jia X, Jin J, Zhou Q, Zhang M, Zhou W, Li A (2020) Differential adsorption of zwitterionic PPCPs by multifunctional resins: the influence of the hydrophobicity and electrostatic potential of PPCPs. Chemosphere 241:125023

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Nuclear Energy Development Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Science and ICT (2018M2B2B1065631).

Author information

Authors and Affiliations

Authors

Contributions

BP: Conceptualization, Methodology, Experiment, Writing – original draft. M-YL: Investigation, Experiment. S-JC: Supervision, Writing – review and editing. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Sang-June Choi.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Human and animal rights statement

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, B., Lee, MY. & Choi, SJ. Selective removal of cesium by magnetic biochar functionalized with Prussian blue in aqueous solution. J Radioanal Nucl Chem 332, 3335–3348 (2023). https://doi.org/10.1007/s10967-023-08986-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08986-2

Keywords

Navigation