Skip to main content
Log in

A study on an optimized pretreatment method for the determination of 55Fe and 63Ni in decommissioning waste samples

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Radioactive wastes, such as concrete and soil, generated during the decommissioning of nuclear facilities contain radionuclides with varying levels of activity. Beta-emitting radionuclides can be identified after thoroughly decomposition and separation from the sample matrix. Among these radionuclides, Fe–55 and Ni–63 play vital roles in the management of radioactive waste from nuclear facilities owing to their pronounced incidence and high mobility in the environment. This study documents the results of the extraction efficiencies of Fe and Ni with a rapid pretreatment method within 2 h by wet digestion methods using hydrochloric acid and nitric acid (3:1, v/v). The average Fe and Ni extraction efficiencies for certified reference materials in soil and sediment matrix were evaluated to be 84–94% and 90–96% with analytical precision within 5%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. IAEA PRIS (Power reactor information system of the international atomic energy agency). https://pris.iaea.org/PRIS/WorldStatistics/OperationalReactorsByCountry.aspx

  2. Lee YJ, Lee KW, Min BY, Hwang DS, Moon JK (2015) The characterization of cement waste form for final disposal of decommissioning concrete wastes. Ann Nucl Energy 77:294–299. https://doi.org/10.1016/j.anucene.2014.11.027

    Article  CAS  Google Scholar 

  3. Hong SB, Kang MJ, Lee KW, Chung US (2009) Development of scaling factors for the activated concrete of the KRR-2. Appl Radiat Isot 67:1530–1533. https://doi.org/10.1016/j.apradiso.2009.02.056

    Article  CAS  PubMed  Google Scholar 

  4. Kim HR (2013) The radioactivity estimation of 14C and 3H in graphite waste samples of the KRR-2. Appl Radiat Isot 79:109–113. https://doi.org/10.1016/j.apradiso.2013.04.027

    Article  CAS  Google Scholar 

  5. Hou X, Østergaard LF, Nielsen SP (2005) Determination of 63Ni and 55Fe in nuclear waste samples using radiochemical separation and liquid scintillation counting. Anal Chim Acta 535:297–307. https://doi.org/10.1016/j.aca.2004.12.022

    Article  CAS  Google Scholar 

  6. BIPM (2006) Monographie BIPM-5-Table of Radionuclides, Volume 3. Bureau International des Poids et Mesures, France

  7. Hou X (2007) Radiochemical analysis of radionuclides difficult to measure for waste characterization in decommissioning of nuclear facilities. J Radioanal Nucl Chem 273:43–48. https://doi.org/10.1007/s10967-007-0708-x

    Article  CAS  Google Scholar 

  8. Bondar’kov MD, Bondar’kov DM, Maksimenko AM, Zheltonozhskii VA, Zheltonozhskaya MV, Petrov VV, Savin AI (2009) Activity study of graphite from the Chernobyl NPP reactor. Bull Russ Acad Sci Phys 73:261–265. https://doi.org/10.3103/S1062873809020300

    Article  Google Scholar 

  9. Remenec B, Dulanska S, Mátel L (2013) Determination of difficult to measure radionuclides in primary circuit facilities of NPP V1 Jaslovske Bohunice. J Radioanal Nucl Chem 298:1879–1884. https://doi.org/10.1007/s10967-013-2679-4

    Article  CAS  Google Scholar 

  10. Gudelis A, Druteikienė R, Luksiene B, Gvozdaitė R, Nielsen SP, Hou X, Mažeika J, Petrošius R (2010) Assessing deposition levels of 55Fe, 60Co and 63Ni in the Ignalina NPP environment. J Environ Radioact 101:464–467. https://doi.org/10.1016/j.jenvrad.2008.08.002

    Article  CAS  PubMed  Google Scholar 

  11. Warwick PE, Cundy AB, Croudace IW, Bains ME, Dale AA (2001) The uptake of iron-55 by marine sediment, macroalgae, and biota following discharge from a nuclear power station. Environ Sci Technol 35:2171–2177. https://doi.org/10.1021/es001493a

    Article  CAS  PubMed  Google Scholar 

  12. Kang MJ, Chung KH, Hong SB, Choi GS, Lee CW (2007) Radioactivity analysis of 55Fe and 63Ni in dismantled concrete. J Korean Radioact Wast Soc 5:19–27 https://koreascience.kr/article/JAKO200714539167527.pdf

  13. Taddei MHT, Macacini JF, Vicente R, Marumo JT, Sakata SK, Terremoto LAA (2013) Determination of 63Ni and 59Ni in spent ion-exchange resin and activated charcoal from the IEA-R1 nuclear research reactor. Appl Radiat Isot 77:50–55. https://doi.org/10.1016/j.apradiso.2013.02.014

    Article  CAS  PubMed  Google Scholar 

  14. Mažeika J, Lujanienė G, Petrošius R, Oryšaka N, Ovčinikov S (2015) Preliminary evaluation of 14C and 36Cl in nuclear waste from Ignalina nuclear power plant decommissioning. Open Chem 13:177–186. https://doi.org/10.1515/chem-2015-0014

    Article  Google Scholar 

  15. Zapata-García D, Wershofen H (2017) Development of radiochemical analysis strategies for decommissioning activities. Appl Radiat Isot 126:204–207. https://doi.org/10.1016/j.apradiso.2017.02.038

    Article  CAS  PubMed  Google Scholar 

  16. Räty A, Lavonen T, Leskinen A, Likonen J, Postolache C, Fugaru V, Bubueanu G, Lungu C, Bucsa A (2019) Characterization measurements of fluental and graphite in FiR1 TRIGA research reactor decommissioning waste. Nucl Eng Des 353:110198. https://doi.org/10.1016/j.nucengdes.2019.110198

    Article  CAS  Google Scholar 

  17. Tam NFY, Yao MWY (1999) Three digestion method to determine concentrations of Cu, Zn, Cd, Ni, Pb, Cr, Mn, and Fe in mangrove sediments from Sai Keng, Chek Keng, and Sha Tau Kok, Hong Kong. Bull Environ Contam Toxicol 62:708–716. https://doi.org/10.1007/s001289900931

    Article  CAS  PubMed  Google Scholar 

  18. Krumgalz BS, Fainshtein G (1989) Trace metal contents in certified reference sediments determined by nitric acid digestion and atomic absorption spectrometry. Anal Chim Acta 218:335–340. https://doi.org/10.1016/S0003-2670(00)80310-4

    Article  CAS  Google Scholar 

  19. Nogueirol RC, de Melo WJ, Bertoncini EI, Alleoni LRF (2013) Concentrations of Cu, Fe, Mn, and Zn in tropical soils amended with sewage sludge and composted sewage sludge. Environ Monit Assess 185:2929–2938. https://doi.org/10.1007/s10661-012-2761-3

    Article  CAS  PubMed  Google Scholar 

  20. dos Santos SN, Alleoni LRF (2013) Methods for extracting heavy metals in soils from the Southwestern Amazon Brazil. Water Air Soil Pollut 224:1430. https://doi.org/10.1007/s11270-012-1430-z

    Article  CAS  Google Scholar 

  21. Lee H, Lim JM, Ji YY, Jung KH, Kang MJ, Choi GS, Lee JH (2015) Comparison of pretreatment methods for determination of 55Fe and 63Ni activity in nuclear wastes sample. J Nucl Fuel Cycle Waste Tecnol 13:113–122. https://doi.org/10.7733/jnfcwt.2015.13.2.113

    Article  Google Scholar 

  22. Lee CY, Lim JM, Kim HC, Park JY, Lee JH (2022) Optimization for I-129 analytical method of radioactive waste sample using high-temperature combustion tube furnace. Anal Sci Technol 35:256–266. https://doi.org/10.5806/AST.2022.35.6.256

    Article  Google Scholar 

  23. Wang F, Davis TE, Tarabara VV (2010) Crystallization of calcium sulfate dihydrate in the presence of colloidal silica. Ind Eng Chem Res 49:11344–11350. https://doi.org/10.1021/ie100309b

    Article  CAS  Google Scholar 

  24. Palmer PT, Jacobs R, Baker PE, Ferguson K, Webber S (2009) Use of field-portable XRF analyzers for rapid screening of toxic elements in FDA-regulated products. J Agric Food Chem 57:2605–2613. https://doi.org/10.1021/jf803285h

    Article  CAS  PubMed  Google Scholar 

  25. Ikeda Y, Ofosu JA, Wakaida I (2020) Development of microwave-enhanced fibre-coupled laser-induced breakdown spectroscopy for nuclear fuel debris screening at Fukushima. Spectrochim Acta B 171:105933. https://doi.org/10.1016/j.sab.2020.105933

    Article  CAS  Google Scholar 

  26. McComb JQ, Rogers C, Han FX, Tchounwou PB (2014) Rapid screening of heavy metals and trace elements in environmental samples using portable X-ray fluorescence spectrometer, a comparative study. Water Air Soil Pollut 225:2169. https://doi.org/10.1007/s11270-014-2169-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Figueroa DA, Jiménez BD, Rodríguez-Sierra CJ (1992) Trace metals in sediments of two estuarine lagoons from Puerto Rico. Environ Pollut 141:336–342. https://doi.org/10.1016/j.envpol.2005.08.037

    Article  CAS  Google Scholar 

  28. Marqués MJ, Salvador A, Morales-Rubio AE, de la Guardia M (2000) Trace element determination in sediments: a comparative study between neutron activation analysis (NAA) and inductively coupled plasma-mass spectrometry (ICP-MS). Microchem J 65:177–187. https://doi.org/10.1016/S0026-265X(00)00051-5

    Article  Google Scholar 

  29. Ni J, Block RC, Xu XG (2000) Photon activation analysis: a proof of principle using a NIST sediment standard and an electron accelerator at Rensselaer Polytechnic Institute. Appl Radiat Isot 53:535–540. https://doi.org/10.1016/S0969-8043(00)00212-8

    Article  CAS  PubMed  Google Scholar 

  30. Paul RL, Mackey EA, Zeisler R, Spatz RO, Tomlin BE (2009) Determination of elements in SRM soil 2709a by neutron activation analysis. J Radioanal Nucl Chem 282:945–950. https://doi.org/10.1007/s10967-009-0250-0

    Article  CAS  Google Scholar 

  31. Chen M, Ma LQ (2001) Comparison of three aqua regia digestion methods for twenty Florida Soils. Soil Sci Soc Am J 65:491–510. https://doi.org/10.2136/sssaj2001.652491x

    Article  CAS  Google Scholar 

  32. García IL, Merlos MS, Córdoba MH (1999) Slurry sampling for the rapid determination of cobalt, nickel and copper in soils and sediments by electrothermal atomic absorption spectrometry. Microchim Acta 130:295–300. https://doi.org/10.1007/BF01242919

    Article  Google Scholar 

  33. Chung YS, Jeong ES, Cho SY (1997) Intercomparison and determination of environmental standard samples by instrumental neutron activation analysis. J Radioanal Nucl Chem 217:71–76. https://doi.org/10.1007/BF02055351

    Article  CAS  Google Scholar 

  34. Chung YS, Begum QS, Choi KS, Moon JH, Kim SH, Lim JM, Kim YJ (2003) Elemental analysis using instrumental neutron activation analysis and inductively coupled plasma atomic emission spectrometry: a comparative study. KAERI Report TR-2513/2013, Volume 56

  35. Tuzen M, Soylak M (2009) Multi-element coprecipitation for separation and enrichment of heavy metal ions for their flame atomic absorption spectrometric determinations. J Hazard Mater 162:724–729. https://doi.org/10.1016/j.jhazmat.2008.05.087

    Article  CAS  PubMed  Google Scholar 

  36. Liang Y, Liu Y, Lin R, Guo D, Liao C (2016) Leaching of rare earth elements from waste lamp phosphor mixtures by reduced alkali fusion followed by acid leaching. Hydrometallurgy 163:99–103. https://doi.org/10.1016/j.hydromet.2016.03.020

    Article  CAS  Google Scholar 

  37. Park JY, Lim JM, Ji YY, Lim CS, Jang BU, Chung KH, Lee W, Kang MJ (2016) Rapid screening of naturally occurring radioactive nuclides (238U, 232Th) in raw materials and by products samples using XRF. J Radiat Prot Res 41:359–367. https://doi.org/10.14407/jrpr.2016.41.4.359

    Article  CAS  Google Scholar 

  38. Vander Heyden Y, Nijhuis A, Smeyers-Verbeke J, Vandeginste BGM, Massart DL (2001) Guidance for robustness/ruggedness tests in method validation. J Pharm Biomed Anal 24:723–753. https://doi.org/10.1016/S0731-7085(00)00529-X

    Article  CAS  PubMed  Google Scholar 

  39. Lai H, Huang L, Gan C, Xing P, Li J, Luo X (2016) Enhanced acid Leaching of metallurgical grade silicon in hydrofluoric acid containing hydrogen peroxide as oxidizing agent. Hydrometallurgy 164:103–110. https://doi.org/10.1016/j.hydromet.2016.06.003

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the KAERI institutional Program (Project No. 521510). This study was presented at the International Conference on Nuclear Analytical Techniques in 2022 (NAT2022), which was held in Daejeon, Korea, from Dec. 7 to 9, 2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Myoung Lim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 72 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, CY., Lim, JM., Kim, H. et al. A study on an optimized pretreatment method for the determination of 55Fe and 63Ni in decommissioning waste samples. J Radioanal Nucl Chem 332, 5185–5191 (2023). https://doi.org/10.1007/s10967-023-08985-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08985-3

Keywords

Navigation