Skip to main content
Log in

Production of cobalt-57 for industrial and medical applications in RFT-30 cyclotron facility

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Cobalt-57 (57Co) has emerged as a promising radionuclide and as an isotope for diagnostic and calibration sources. Herein, we report the production, chemical separation, and quality control of 57Co in an RFT-30 cyclotron facility. 57Co is produced via (p, 2p) nuclear reaction using an enriched 58Ni target material. Electrodeposits of 58Ni on Ag backing were obtained and irradiated using an incident proton beam energy of 17.4 MeV. The chemical separation of 57Co and recovery of the enriched 58Ni target material were simplified via a solid-phase extraction method. The radionuclide purity (> 99.9%) and metallic impurities (< 25 ppb) of purified 57Co were confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. National Nuclear Data Center BNL (2008) National Nuclear Data Center. https://www.nndc.bnl.gov/nudat3/decaysearchdirect.jsp?nuc=57Co&unc=NDS

  2. Lee WW (2019) Clinical applications of technetium-99m quantitative single-photon emission computed tomography/computed tomography. Nucl Med Mol Imaging 53(3):172–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Beckmann J, Popovic K (2020) Assessment of the attenuation of metal-infused filaments for 3D printing a gamma camera calibration phantom. Med Eng Phys 80:60–64

    Article  PubMed  Google Scholar 

  4. Lee J, Kim H, Kye YU, Lee DY, Kim JK, Jo WS, Kang Y-R (2022) Source and LV is based coincidence summing correction in HPGe gamma-ray spectrometry. Nucl Eng Technol 54(5):1754–1759

    Article  CAS  Google Scholar 

  5. Amoyal G, Schoepff V, Carrel F, Lourenço V, Lacour D, Branger T (2019) Metrological characterization of the GAMPIX gamma camera. Nucl Instrum Methods Phys Res Sect A 944:162568

    Article  CAS  Google Scholar 

  6. Peplowski PN (2021) Cross sections for the production of radionuclides via natCu (p, X) spallation reactions for proton energies from 250 MeV to 2 GeV. Nucl Phys A 1006:122067

    Article  CAS  Google Scholar 

  7. Mavrikis D, Ioannidou A, Savidou A. Development of techniques for clearance of spent sealed nuclear medicine calibration sources

  8. Fabbri A, Cencelli VO, Bennati P, Cinti MN, Pellegrini R, De Vincentis G, Pani R (2013) Dual isotope imaging with LaBr 3: Ce crystal and H8500 PSPMT. J Instrum 8(02):C02022

    Article  Google Scholar 

  9. Trindev P (2021) Quality control of whole body image uniformity. Med Phys Int 9(1):97

    Google Scholar 

  10. Chaudhuri BP, Ceyssens F, Celen S, Bormans G, Kraft M, Puers R (2019) In-vivo intradermal delivery of Co-57 labeled vitamin B-12, and subsequent comparison with standard subcutaneous administration. In: 2019 41st annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 1670–1673

  11. Collins DA (2019) Imaging cobalamin uptake within malignant breast tumors in vivo. Mol Imag Biol 21(2):356–367

    Article  CAS  Google Scholar 

  12. Rothenberg SP (1963) Radioassay of serum vitamin B 12 by quantitating the competition between Co 57 B 12 and unlabeled B 12 for the binding sites of intrinsic factor. J Clin Investig 42(9):1391–1398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Barrett KE, Houson HA, Lin W, Lapi SE, Engle JW (2021) Production, purification, and applications of a potential theranostic pair: cobalt-55 and cobalt-58m. Diagnostics 11(7):1235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Spellerberg S, Reimer P, Blessing G, Coenen H, Qaim S (1998) Production of 55Co and 57Co via proton induced reactions on highly enriched 58Ni. Appl Radiat Isot 49(12):1519–1522

    Article  CAS  Google Scholar 

  15. Kumabe I, Ogata H, Komatuzaki T, Inoue N, Tomita S, Yamada Y, Yamaki T, Matsumoto S (1963) (p, α) reactions on the even nuclei Ni58, Ni60 and Fe56. Nucl Phys 46:437–453

    Article  CAS  Google Scholar 

  16. O’Brien B, Coote G (1970) A study of 57Co by the 56Fe (p, γ) 57Co reaction. Nucl Phys A 153(2):593–609

    Article  CAS  Google Scholar 

  17. Wiederhold JG (2006) Iron isotope fractionation in soils: from phenomena to process identification. ETH Zurich, Zurich

    Google Scholar 

  18. National Nuclear Data Center BNL (2008) National Nuclear Data Center. https://www-nds.iaea.org/exfor/servlet/X4sMakeX4

  19. Beekhuis H, Nieweg OE (1984) Radiation absorbed doses from Co-57-and Co-55 bleomycin. J Nucl Med 25:478–485

    CAS  PubMed  Google Scholar 

  20. Reimer P, Qaim S (1998) Excitation functions of proton induced reactions on highly enriched 58Ni with special relevance to the production of 55Co and 57Co. Radiochim Acta 80:113–120

    Article  CAS  Google Scholar 

  21. AC07607271 A (2009) Cyclotron produced radionuclides-physical characteristics and production methods. Internat. Atomic Energy Agency

  22. Roushan FP, Jalilian AR, Sabet M, Akhlaghi M (2004) Production and quality control of 66Ga as a PET radioisotope. Int J Radiat Res 2(3):149–158

    Google Scholar 

  23. Kilian K, Cheda Ł, Sitarz M, Szkliniarz K, Choiński J, Stolarz A (2018) Separation of 44Sc from natural calcium carbonate targets for synthesis of 44Sc-DOTATATE. Molecules 23:1787

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kilinç F, Karpuz N, Çetın B (2016) Theoretical cross-section calculation of In-111, Tc-99m, Co-57 radioisotopes used for kidney imaging. Acta Phys Pol A 130(1):311–312

    Article  Google Scholar 

  25. Aluicio-Sarduy E, Hernandez R, Valdovinos HF, Kutyreff CJ, Ellison PA, Barnhart TE, Nickles RJ, Engle JW (2018) Simplified and automatable radiochemical separation strategy for the production of radiopharmaceutical quality 86Y using single column extraction chromatography. Appl Radiat Isot 142:28–31

    Article  CAS  PubMed  Google Scholar 

  26. Martini P, Adamo A, Syna N, Boschi A, Uccelli L, Weeranoppanant N, Markham J, Pascali G (2019) Perspectives on the use of liquid extraction for radioisotope purification. Molecules 24(2):334

    Article  PubMed  PubMed Central  Google Scholar 

  27. Davis C, Li C, Nie R, Guzzardi N, Dworakowska B, Sadasivam P, Maher J, Aboagye EO, Lu Z, Yan R (2022) Highly effective liquid and solid phase extraction methods to concentrate radioiodine isotopes for radioiodination chemistry. J Label Compd Radiopharm 65(10–11):280–287

    Article  CAS  Google Scholar 

  28. Jennewein M, Qaim SM, Kulkarni P, Mason R, Hermanne A, Rösch F (2005) A no-carrier-added 72Se/72As radionuclide generator based on solid phase extraction. Radiochim Acta 93(9–10):579–583

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Nuclear R&D Program through the National Research Foundation of Korea, funded by the Ministry of Science, ICT, and Future Planning (2017M2A2A6A05016600, 2021M2E7A1079112 and RS-2023-00237149), and National science & Technology Information Service, Republic of Korea. We acknowledge researcher of the RFT-30 cyclotron facility at Korea Atomic Energy Research Institute, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong Hoon Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.Y., Chae, J., Lee, J. et al. Production of cobalt-57 for industrial and medical applications in RFT-30 cyclotron facility. J Radioanal Nucl Chem 332, 5097–5103 (2023). https://doi.org/10.1007/s10967-023-08978-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08978-2

Keywords

Navigation