Skip to main content
Log in

High capacity adsorption of iodine gas by Ag0@C/SiO2 derived from rice husk: synergistic effect between C/SiO2 supports and Ag0 sites

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A series of Ag0@C/SiO2 adsorbents were prepared using rice husk-based C/SiO2 as supports and applied to capture iodine gas. The results demonstrated that 50%Ag0@C/SiO2 reached a record high iodine adsorption capacity (788 ± 25 mg/g) due to the synergistic effect between C/SiO2 supports and Ag0 sites. The adsorption data of Ag0@C/SiO2 can be better fitted with the pseudo first order and Langmuir models. The iodine adsorption process included the physical and chemical adsorption. The adsorption mechanism was that Ag0 reacted with I2 to form AgI. Owing to the excellent adsorption capacity, Ag0@C/SiO2 derived from rice husk could be promising iodine gas adsorbents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ewing RC, Hippel FNV (2009) Nuclear waste management in the United States-starting over. Science 325:151–152

    Article  CAS  PubMed  Google Scholar 

  2. Yoshida N, Kanda J (2012) Tracking the fukushima radionuclides. Science 336:1115–1116

    Article  CAS  PubMed  Google Scholar 

  3. Nandanwar SU, Coldsnow K, Utgikar V, Sabharwall P, Aston DE (2016) Capture of harmful radioactive contaminants from off-gas stream using porous solid sorbents for clean environment-A review. Chem Eng J 306:369–381

    Article  CAS  Google Scholar 

  4. Yang JH, Shin JM, Park JJ, Park GI, Yim MS (2015) Novel synthesis of bismuth-based adsorbents for the removal of 129I in off-gas. J Nucl Mat 457:1–8

    Article  CAS  Google Scholar 

  5. Reda AT, Pan M, Zhang DX, Xu XY (2021) Bismuth-based materials for iodine capture and storage: a review. J Environ Chem Eng 9:105279

    Article  Google Scholar 

  6. Pham TCT, Docao S, Hwang IC, Song MK, Choi DY, Moon D, Oleynikov P, Yoon KB (2016) Capture of iodine and organic iodides using silica zeolites and the semiconductor behaviour of iodine in a silica zeolite. Energ Environ Sci 9:1050–1062

    Article  CAS  Google Scholar 

  7. Chien CC, Huang YP, Wang WC, Chao JH, Wei YY (2011) Effciency of mosobamboo charcoal and activated carbon for adsorbing radioactive iodine. Clean-Soil Air Water 39:103–108

    Article  CAS  Google Scholar 

  8. Subrahmanyam KS, Sarma D, Malliakas CD, Polychronopoulou K, Riley BJ, Pierce DA, Chun J, Kanatzidis MG (2015) Chalcogenide aerogels as sorbents for radioactive iodine. Chem Mat 27:2619–2626

    Article  CAS  Google Scholar 

  9. Zhang XR, Silva ID, Fazzi R, Sheveleva AM, Han X, Spencer BF, Sapchenko SA, Tuna F, McInnes EJL, Li M, Yang SH, Schröder M (2019) Iodine adsorption in a redox-active metal-organic framework: electrical conductivity induced by host-guest charge-transfer. Inorg Chem 58:14145–14150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Miensah ED, Chen JY, Gu AT, Wang P, Liu Y, Gong CH, Mao P, Chen K, Jiao Y, Zhang ZX, Yang Y (2021) Ultrahigh capture of radioiodine with zinc oxide-decorated, nitrogen-doped hierarchical nanoporous carbon derived from sonicated ZIF-8-precursor. J Mat Sci 56:9106–9121

    Article  CAS  Google Scholar 

  11. Wang P, Xu Q, Li ZP, Jiang WM, Jiang QH, Jiang DL (2018) Exceptional iodine capture in 2D covalent organic frameworks. Adv Mat 30:1801991

    Article  Google Scholar 

  12. Wang JL, Zhuang ST (2019) Covalent organic frameworks (COFs) for environmental applications. Coord Chem Rev 400:213046

    Article  CAS  Google Scholar 

  13. Scott SM, Hu T, Yao TK, Xin GQ, Lian J (2015) Graphene-based sorbents for iodine-129 capture and sequestration. Carbon 90:1–8

    Article  CAS  Google Scholar 

  14. Hijazi A, Azambre B, Finqueneisel G, Vibert F, Blin JL (2019) High iodine adsorption by polyethyleneimine impregnated nanosilica sorbents. Micropor Mesopor Mat 288:109586

    Article  CAS  Google Scholar 

  15. Chapman KW, Chupas PJ, Nenoff TM (2010) Radioactive iodine capture in silver-containing mordenites through nanoscale silver iodide formation. J Am Chem Soc 132:8897–8899

    Article  CAS  PubMed  Google Scholar 

  16. Azambre B, Chebbi M, Leroy O, Cantrel L (2018) Effects of zeolitic parameters and irradiation on the retention properties of silver zeolites exposed to molecular iodine. Ind Eng Chem Res 57:1468–1479

    Article  CAS  Google Scholar 

  17. Azambre B, Chebbi M, Ibrahim N (2021) Structure-activity relationships between the state of silver on different supports and their I2 and CH3I adsorption properties. Nanomaterials 11:1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shen Z, Wiechert AI, Choi S, Ladshaw AP, Tavlarides LL, Tsouris C, Yiacoumi S (2022) Silver-functionalized silica aerogel for iodine capture: adsorbent aging by NO2 in spent nuclear fuel reprocessing off-gas. Micropor Mesopor Mat 336:111898

    Article  CAS  Google Scholar 

  19. Matyáš J, Ilton ES, Kovaík L (2018) Silver-functionalized silica aerogel: towards an understanding of aging on iodine sorption performance. RSC Adv 8:31843–31852

    Article  PubMed  PubMed Central  Google Scholar 

  20. Riley BJ, Vienna JD, Strachan DM, McCloy JS, Jerden JL (2016) Materials and processes for the effective capture and immobilization of radioiodine: a review. J Nucl Mater 470:307–326

    Article  CAS  Google Scholar 

  21. Strachan DM, Chun J, Henager CH, Matyáš J, Riley BJ, Ryan JV, Thallapally PK (2010) Pnnl-20007: summary report for the development of materials for volatile radionuclides. Pacifc Northwest National Laboratory, Washington

    Book  Google Scholar 

  22. Yang JH, Cho YJ, Shin JM, Yim MS (2015) Bismuth-embedded SBA-15 mesoporous silica for radioactive iodine capture and stable storage. J Nucl Mater 465:556–564

    Article  CAS  Google Scholar 

  23. Mane VS, Mall ID, Srivastava VC (2007) Kinetic and equilibrium isotherm studies for the adsorptive removal of brilliant green dye from aqueous solution by rice husk ash. J Environ Manage 84:390–400

    Article  CAS  PubMed  Google Scholar 

  24. Ajmal M, Rao RAK, Anwar S, Ahmad J, Ahmad R (2003) Adsorption studies on rice husk: removal and recovery of Cd(II) from wastewater. Bioresource Technol 86:147–149

    Article  CAS  Google Scholar 

  25. Xu XY, Cao X, Zhao L (2013) Comparison of rice husk- and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions: role of mineral components in biochars. Chemosphere 92:955–961

    Article  CAS  PubMed  Google Scholar 

  26. Zhu KR, Fu H, Zhang JH, Lv XS, Tang J, Xu XH (2012) Studies on removal of NH4+-N from aqueous solution by using the activated carbons derived from rice husk. Biomass Bioenerg 43:18–25

    Article  CAS  Google Scholar 

  27. Xian Q, Gan Y, Yu JP, Xiao X, Chen QL, Dan H, Zhu L, Ding Y, Duan T (2022) Scalable and economical Bi0-SiO2 for the high efficient capture of iodine gas. J Nucl Mater 567:153849

    Article  CAS  Google Scholar 

  28. Xian Q, Chen L, Fan WJ, Liu Y, He XM, Dan H, Zhu L, Ding Y, Duan T (2022) Facile synthesis of novel Bi0-SBA-15 adsorbents by an improved impregnation reduction method for highly effcient capture of iodine gas. J Hazard Mater 424:127678

    Article  CAS  PubMed  Google Scholar 

  29. Riley BJ, Chong S, Asmussen RM, Bourchy A, Engelhard MH (2021) Polyacrylonitrile composites of Ag-Al-Si-O aerogels and xerogels as iodine and iodide sorbents. ACS Appl Polym Mater 3:3344–3353

    Article  CAS  Google Scholar 

  30. Lee JW, Hong SM, Lee JH, Cho YZ (2021) Synthesis and characterization of Ag-containing hydrophobic aluminosilicate aerogels for I2 capture. J Nucl Mater 557:153309

    Article  CAS  Google Scholar 

  31. Lorjai P, Chaisuwan T, Wongkasemjit S (2009) Porous structure of polybenzoxazine-based organic aerogel prepared by sol-gel process and their carbon aerogels. J Sol-Gel Sci Technol 52:56–64

    Article  CAS  Google Scholar 

  32. Wu L, Sawada JA, Kuznicki DB, Kuznicki T, Kuznicki SM (2014) Iodine adsorption on silver-exchanged titania-derived adsorbents. J Radioanal Nucl Chem 302:527–532

    Article  CAS  Google Scholar 

  33. Chong S, Riley BJ, Peterson JA, Olszta MJ, Nelson ZJ (2020) Gaseous iodine sorbents: a comparison between Ag-loaded aerogel and xerogel scaffolds. ACS Appl Mater Interfaces 12:26127–26136

    Article  CAS  PubMed  Google Scholar 

  34. Nan Y, Tavlarides LL, DePaoli DW (2017) Adsorption of iodine on hydrogen-reduced silver-exchanged mordenite: experiments and modeling. AIChE J 63:1024–1035

    Article  CAS  Google Scholar 

  35. Ye ML, Tang JJ, Xu D, He ZM, Tang ZH (1991) A study of the adsorption properties of the silver nitrate impregnated mordenite for airborne radioiodine. J Nucl Radiochem 13:169–175

    CAS  Google Scholar 

  36. Tang JJ, Ye ML, Mao Y, Lu SJ, Tang ZH, Guo ZH (1987) Investigation of adsorption properties of the silver nitrate impregnated silica gels for radioiodine. Chin J Nucl Sci Eng 7:144–163

    Google Scholar 

  37. Yue LQ, Luo DL (2012) Research development of locating radioiiodine by solid sorbent in a gas medium. Mater Rev 26:285–289

    Google Scholar 

  38. Sava DF, Rodriguez MA, Chapman KW, Chupas PJ, Greathouse JA, Crozier PS, Nenoff TM (2011) Capture of volatile iodine, a gaseous fission product, by zeolitic imidazolate framework-8. J Am Chem Soc 133:12398–12401

    Article  CAS  PubMed  Google Scholar 

  39. Tang Y, Huang H, Li J, Xue W, Zhong C (2019) IL-induced formation of dynamic complex iodide anions in IL@MOF composites for effcient iodine capture. J Mater Chem A 7:18324–18329

    Article  CAS  Google Scholar 

  40. Li ZJ, Ju YU, Yu B, Wu X, Lu H, Li Y, Zhou J, Guo X, Zhang ZH, Lin J, Wang JQ, Wang S (2020) Modulated synthesis and isoreticular expansion of Th-MOFs with record high pore volume and surface area for iodine adsorption. Chem Commun 56:6715–6718

    Article  CAS  Google Scholar 

  41. Zhang X, Silva ID, Godfrey HGW, Callear SK, Sapchenko SA, Cheng Y, Vitórica-Yrezábal I, Frogley MD, Cinque G, Tang CC, Giacobbe C, Dejoie C, Rudić S, Ramirez-Cuesta AJ, Denecke MA, Yang S, Schröder M (2017) Confinement of idine molecules into triple-helical chains within robust metal-organic frameworks. J Am Chem Soc 139:16289–16296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Guo XH, Li Y, Zhang MC, Cao KC, Tian Y, Qi Y, Li SJ, Li K, Yu XQ, Ma LJ (2020) Colyliform crystalline 2D covalent organic frameworks with quasi-3D topologies for rapid I2 adsorption. Angew Chem Int Ed 132:22886–22894

    Article  Google Scholar 

  43. Sava DF, Chapman KW, Rodriguez MA, Greathouse JA, Crozier PS, Zhao H, Chupas PJ, Nenoff TM (2013) Competitive I2 sorption by Cu-BTC from humid gas streams. Chem Mater 25:2591–2596

    Article  CAS  Google Scholar 

  44. Zou H, Guo JB, Song MX, Yi FC, Wang XQ, Pan N, Li HL, Li WM, Bian L (2021) Bi2S3-reduced graphene oxide composite for gaseous radioiodine capture and its immobilization within glass composite material. Prog Nucl Energy 135:103705

    Article  CAS  Google Scholar 

  45. Tian Z, Chee T, Zhu L, Duan T, Zhang X, Lei L, Xiao C (2021) Comprehensive comparison of bismuth and silver functionalized nickel foam composites in capturing radioactive gaseous iodine. J Hazard Mater 417:125978

    Article  CAS  PubMed  Google Scholar 

  46. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  47. Freundlich H (1907) Über die adsorption in lösungen. J Phys Chem 57:385–470

    CAS  Google Scholar 

  48. Azambre B, Chebbi M (2017) Evaluation of silver zeolites sorbents toward their ability to promote stable CH3I storage as AgI precipitates. ACS Appl Mater Interfaces 9(30):25194–25203

    Article  CAS  PubMed  Google Scholar 

  49. Gu H, Bai X, Wu Y, Chai Z, Wang X (2018) The controllable mutual transformation of Ag+/Ag0 pairs in Ag3PO4/Bi2MoO6 toward the high catalytic efficiency and durable reusability. J Mater Sci 53:16524–16538

    Article  CAS  Google Scholar 

  50. Corro G, Vidal E, Cebada S, Pal U, Bañuelos F, Vargas D, Guilleminot E (2017) Electronic state of silver in Ag/SiO2 and Ag/ZnO catalysts and its effect on diesel particulate matter oxidation: an XPS study. Appl Catal B-Environ 216:1–10

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks for the financial support of the Sichuan Science and Technology Program (No. 2022NSFSC0199, 2023NSFSC0356).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Dan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 683 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, Y., Ai, Y., Wang, H. et al. High capacity adsorption of iodine gas by Ag0@C/SiO2 derived from rice husk: synergistic effect between C/SiO2 supports and Ag0 sites. J Radioanal Nucl Chem 332, 3059–3068 (2023). https://doi.org/10.1007/s10967-023-08973-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08973-7

Keywords

Navigation