Skip to main content
Log in

Evaluation of hyperfine interactions in strontium titanate perovskite for low doses of electron beam radiation

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Perovskite are potential crystalline host phases for immobilization of actinides and fission products generated in nuclear reactor fuel. Crystalline matrix undergoes radiation damage from radiations emanating from immobilized radioactive waste. This may influence the hyperfine interactions in host crystalline matrices. Hyperfine interactions in strontium titanate perovskite have been studied for low doses of β radiation induced local structural changes (if any) using γ-γ Time Differential Perturbed Angular Correlation (TDPAC) spectroscopy using 181Hf as a probe. Samples were irradiated with external electron beam source to simulate beta radiation effects in the matrix. TDPAC spectrum of unirradiated strontium titanate revealed the probe experiencing two sites shown by a dynamic component and a static component of Electric Field Gradient (EFG). Samples were irradiated with electron beam up to a dose of 50 kGy. TDPAC results of irradiated strontium titanate matrix do not show any change in static hyperfine interaction parameters. The dynamic component was found to be affected after irradiation as evident from the increase in the relaxation time (τ) for irradiated samples compared to unirradiated sample. However, no change in τ-value was observed with the increasing irradiation dose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ringwood AE, Oversby VM, Kesson SE et al (1981) Immobilization of high-level nuclear reactor wastes in SYNROC: a current appraisal. Nucl Chem Waste Manag 2:287–305. https://doi.org/10.1016/0191-815X(81)90055-3

    Article  CAS  Google Scholar 

  2. Ringwood AE, Kelly PM (1986) Immobilization of high-level waste in ceramic waste forms. Philos Trans R Soc Lond 319:63–82. https://doi.org/10.1098/rsta.1986.0086

    Article  CAS  Google Scholar 

  3. Stewart MWA, Begg D, Finnie K, et al (2003) Ion irradiation damage in zirconate and titanate ceramics for Pu disposition. In: Proceedings of the international conference on radioactive waste management and environmental remediation, ICEM. pp 1249–1255

  4. Ringwood AE, Kesson SE, Ware NG et al (1979) The SYNROC process: a geochemical approach to nuclear waste immobilization. Geochem J 13:141–165. https://doi.org/10.2343/geochemj.13.141

    Article  CAS  Google Scholar 

  5. Jayabal P, Sasirekha V, Mayandi J et al (2014) A facile hydrothermal synthesis of SrTiO3 for dye sensitized solar cell application. J Alloys Compd 586:456–461. https://doi.org/10.1016/j.jallcom.2013.10.012

    Article  CAS  Google Scholar 

  6. Okamoto Y, Fukui R, Fukazawa M, Suzuki Y (2017) SrTiO3/TiO2 composite electron transport layer for perovskite solar cells. Mater Lett 187:111–113. https://doi.org/10.1016/j.matlet.2016.10.090

    Article  CAS  Google Scholar 

  7. Kopač D, Likozar B, Huš M (2020) How size matters: electronic, cooperative, and geometric effect in perovskite-supported copper catalysts for CO2 reduction. ACS Catal 10:4092–4102. https://doi.org/10.1021/acscatal.9b05303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Patial S, Hasija V, Raizada P et al (2020) Tunable photocatalytic activity of SrTiO3 for water splitting: strategies and future scenario. J Environ Chem Eng 8:103791. https://doi.org/10.1016/j.jece.2020.103791

    Article  CAS  Google Scholar 

  9. Saravanan G, Ramachandran K, Gajendiran J, Padmini E (2020) Effect of ceria concentration of strontium titanate on the structural, optical, dielectric and electrical properties. Chem Phys Lett 746:137314. https://doi.org/10.1016/j.cplett.2020.137314

    Article  CAS  Google Scholar 

  10. Itahashi YM, Ideue T, Saito Y et al (2020) Nonreciprocal transport in gate-induced polar superconductor SrTiO 3. Sci Adv 6:eaay9120. https://doi.org/10.1126/sciadv.aay9120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shende RV, Krueger DS, Rossetti GA, Lombardo SJ (2001) Strontium zirconate and strontium titanate ceramics for high-voltage applications: synthesis, processing, and dielectric properties. J Am Ceram Soc 84:1648–1650. https://doi.org/10.1111/j.1151-2916.2001.tb00893.x

    Article  CAS  Google Scholar 

  12. Orlova AI, Ojovan MI (2019) Ceramic mineral waste-forms for nuclear waste immobilization. Materials (Basel) 12:2638. https://doi.org/10.3390/ma12162638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yang Y, Luo S, Dong F et al (2015) Response of strontium titanate to electron irradiation for the immobilization of strontium. J Radioanal Nucl Chem 303:341–345. https://doi.org/10.1007/s10967-014-3356-y

    Article  CAS  Google Scholar 

  14. Zacate M, Jaeger H (2011) Perturbed angular correlation spectroscopy-a tool for the study of defects and diffusion at the atomic scale. Defect Diffus Forum 311:3–38. https://doi.org/10.4028/www.scientific.net/DDF.311.3

    Article  CAS  Google Scholar 

  15. Schell J, Kamba S, Kachlik M et al (2019) Thermal annealing effects in polycrystalline EuTiO 3 and Eu 2 Ti 2 O 7. AIP Adv 9:125125. https://doi.org/10.1063/1.5115466

    Article  CAS  Google Scholar 

  16. López-García A, Alonso RE, Falabella M, Echeverria G (2010) The effect of oxygen vacancies in Ca1-xSrxHfO 3. Ferroelectrics 396:37–48. https://doi.org/10.1080/00150191003795130

    Article  CAS  Google Scholar 

  17. De La Presa P, López-García A (1997) Defects in CaHfO3 produced by thermal neutron irradiation. Radiat Eff Defects Solids 140:141–149. https://doi.org/10.1080/10420159708216841

    Article  Google Scholar 

  18. Schell J, Marschick G (2019) TDPAC studies of local defects and phenomena in ferroics and multiferroics. Crystals 9:611. https://doi.org/10.3390/cryst9120611

    Article  CAS  Google Scholar 

  19. Kumar A, Mishra RK, Khader SA et al (2021) Electron beam irradiation induced changes in local structure of simulated waste bearing sodium borosilicate glasses. Nucl Instrum Methods Phys Res Sect B Beam Interact with Mater Atoms 486:85–93. https://doi.org/10.1016/j.nimb.2020.11.007

    Article  CAS  Google Scholar 

  20. Kumar A, Mishra RK, Bhardwaj YK et al (2021) Probing electronic environment in gamma irradiated sodium borosilicate glass and simulated waste glass: a perturbed angular correlation spectroscopy study. J Radioanal Nucl Chem 328:569–576. https://doi.org/10.1007/s10967-021-07686-z

    Article  CAS  Google Scholar 

  21. Kumar A, Sahu M, Deb AC et al (2021) Structural investigation in strontium titanate (SrTiO3) synthesized by gel-combustion method and in-gelation method: a TDPAC and XRD study. J Mater Sci Mater Electron 32:11577–11587. https://doi.org/10.1007/s10854-021-05753-5

    Article  CAS  Google Scholar 

  22. Kumar A, Mandal G, Das P, Tomar BS (2017) Hyperfine interaction study of pressure induced phase transformations in Hafnia. J Radioanal Nucl Chem 313:683–687. https://doi.org/10.1007/s10967-017-5351-6

    Article  CAS  Google Scholar 

  23. Chatterjee A, Ramachandran K, Kumar A, Behere A (2013) Linux advanced multiparameter system. Nucl Phys Div BARC http//www tifr res in/~ pell/lamps html

  24. Lindgren B (1996) Depack Software. Hyperfine Interact C:613

  25. Banerjee D, Guin R, Das SK, Thakare SV (2011) Effect of γ-dose on the crystal structure and leaching behavior of TiO2 matrix labeled with 181Hf/181Ta tracer. J Radioanal Nucl Chem 290:119–121. https://doi.org/10.1007/s10967-011-1155-2

    Article  CAS  Google Scholar 

  26. Darriba GN, Errico LA, Eversheim PD et al (2009) First-principles and time-differential γ-γ Perturbed-angular- correlation spectroscopy study of structural and electronic properties of Ta-doped TiO2 semiconductor. Phys Rev B Condens Matter Mater Phys 79:115213. https://doi.org/10.1103/PhysRevB.79.115213

    Article  CAS  Google Scholar 

  27. Xue H, Zarkadoula E, Liu P et al (2017) Amorphization due to electronic energy deposition in defective strontium titanate. Acta Mater 127:400–406. https://doi.org/10.1016/j.actamat.2017.01.051

    Article  CAS  Google Scholar 

  28. de la Presa P, Lieb KP, Uhrmacher M, Ziegeler L (2000) Perturbed angular correlation studies in SrTiO3 single crystals. Zeitschrift fur Naturforsch Sect A J Phys Sci 55:237–241. https://doi.org/10.1515/zna-2000-1-242

    Article  Google Scholar 

  29. Komatsuda S, Sato W, Ohkubo Y (2021) Local structure of impurity doped strontium titanate studied by TDPAC method. In: Crisan O (ed) 3rd international conference on hyperfine interactions and their applications. Brasov, Romania, p PIII2

  30. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A 32:751–767. https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  31. da Andrade PR, Forker M, Rogers JD, Kunzler JV (1972) Nuclear-quadrupole interactions in perovskite-type compounds of Hf 181 studied by the perturbed-angular-correlation technique. Phys Rev B 6:2560–2565. https://doi.org/10.1103/PhysRevB.6.2560

    Article  CAS  Google Scholar 

  32. Berger MJ, Coursey JS, Zucker MA, Chang J (2017) Stopping power and range tables for electrons, protons, and helium ions. NIST Stand. Ref. Database 124, Available https//www.nist.gov/pml/stopping-power-range-tables-electrons-protons-and-helium-ions

  33. Smith KL, Zaluzec NJ (2005) The displacement energies of cations in perovskite (CaTiO3). J Nucl Mater 336:261–266. https://doi.org/10.1016/j.jnucmat.2004.09.021

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank Dr. H. J. Pant, Head, Isotope and Radiation Application Division, Bhabha Atomic Research Centre, for the use of E.B. facility for irradiation experiments. Authors are also thankful to Mr. Patkari (SA/E) for support during the irradiation experiment.

Author information

Authors and Affiliations

Authors

Contributions

AK: Visualization, Investigation, draft-writing and editing. MS: Resources (Sample preparation). SAK: Resources (EB irradiation). BST: Supervision, draft-writing and proofing.

Corresponding authors

Correspondence to Ashwani Kumar or B. S. Tomar.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Sahu, M., Khader, S.A. et al. Evaluation of hyperfine interactions in strontium titanate perovskite for low doses of electron beam radiation. J Radioanal Nucl Chem 332, 2963–2970 (2023). https://doi.org/10.1007/s10967-023-08964-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08964-8

Keywords

Navigation