Skip to main content
Log in

Facile synthesis of polydopamine-interlinked titanate nanosheets and copper hexacyanoferrate for highly efficient removal of Cs(I)

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A novel efficient adsorbent (TNSs@PDA@CuHCF) was synthesized by polydopamine coating and copper hexacyanoferrate loading on titanate nanosheets and applied to adsorb Cs(I) form aqueous solution. The adsorbent exhibited an excellent adsorption capacity for Cs(I) (374.53 mg/g at 298 K). Adsorption behavious of Cs(I) on TNSs@PDA@CuHCF could be well described by the Langmuir isotherm model and the pseudo-second-order kinetic model, respectively. Thermodynamic analysis revealed that adsorption of Cs(I) was a spontaneous and endothermic process. The interaction of Cs(I) and adsorbent was largely attributed to ion exchange.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Veliscek-Carolan J (2016) Separation of actinides from spent nuclear fuel: a review. J Hazard Mater 318:266–281. https://doi.org/10.1016/j.jhazmat.2016.07.027

    Article  CAS  PubMed  Google Scholar 

  2. Sarafraz H, Minuchehr A, Alahyarizadeh GH, Rahimi Z (2017) Synthesis of enhanced phosphonic functional groups mesoporous silica for uranium selective adsorption from aqueous solutions. Sci Rep 7:11675. https://doi.org/10.1038/s41598-017-11993-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Foo KY, Hameed BH (2012) Potential of activated carbon adsorption processes for the remediation of nuclear effluents: a recent literature. Desalin Water Treat 41:72–78. https://doi.org/10.1080/19443994.2012.664680

    Article  CAS  Google Scholar 

  4. Yoshida N, Kanda J (2012) Tracking the Fukushima radionuclides. Science 336:1115–1116. https://doi.org/10.1126/science.121949

    Article  CAS  PubMed  Google Scholar 

  5. Liu X, Wang J (2021) Adsorptive removal of Sr2+ and Cs+ from aqueous solution by capacitive deionization. Environ Sci Pollut Res 28:3182–3195

    Article  CAS  Google Scholar 

  6. Li HT, Zhang LJ, Chen JH, Lu MH, Xie JH, Wang X, Han K, Li JY, Lu J (2022) Reduced graphene oxide based aerogels: doped with ternary Prussian blue analogs and selective removal of Cs from effluent. J Water Process Eng 47:102741. https://doi.org/10.1016/j.jwpe.2022.102741

    Article  Google Scholar 

  7. Peng XY, Zheng JH, Wang JS, Xiang C, Wang R (2022) Synthesis of hollow mesoporous silica spheres functionalized with copper ferrocyanide and its application for Cs+ removal. Environ Sci Pollut Res 29:53509–53521. https://doi.org/10.1007/s11356-022-19659-0

    Article  CAS  Google Scholar 

  8. Lee SH, Choi M, Moon JK, Kim SW, Lee S, Ryu I, Choi J, Kim S (2022) Electrosorption removal of cesium ions with a copper hexacyanoferrate electrode in a capacitive deionization (CDI) system. Colloid Surf A 647:129175. https://doi.org/10.1016/j.colsurfa.2022.129175

    Article  CAS  Google Scholar 

  9. Liu Z, Zhou YQ, Guo M, Lv BL, Wu ZJ, Zhou WZ (2019) Experimental and theoretical investigations of Cs+ adsorption on crown ethers modified magnetic adsorbent. J Hazard Mater 371:712–720. https://doi.org/10.1016/j.jhazmat.2019.03.022

    Article  CAS  PubMed  Google Scholar 

  10. Draouil H, Alvarez L, Causse J, Flaud V, Zaibi MA, Bantignies JL, Oueslati M, Cambedouzou J (2017) Copper hexacyanoferrate functionalized singlewalled carbon nanotubes for selective cesium extraction. New J Chem 41:7705–7713. https://doi.org/10.1039/C7NJ00879A

    Article  CAS  Google Scholar 

  11. Ivanets A, Milyutin V, Shashkova I, Kitikova N, Nekrasova N, Radkevich A (2020) Sorption of stable and radioactive Cs(I), Sr(II), Co(II) ions on Ti–Ca–Mg phosphates. J Radioanal Nucl Chem 324:1115–1123. https://doi.org/10.1007/s10967-020-07140-6

    Article  CAS  Google Scholar 

  12. Kim J, Kang J, Um W (2022) Simultaneous removal of cesium and iodate using Prussian blue functionalized CoCr layered double hydroxide (PB-LDH). J Environ Chem Eng 10:107477. https://doi.org/10.1016/j.jece.2022.107477

    Article  CAS  Google Scholar 

  13. Wessells CD, Huggins RA, Cui Y (2011) Copper hexacyanoferrate battery electrodes with long cycle life and high power. Nat Commun 2:550. https://doi.org/10.1038/ncomms1563

    Article  CAS  PubMed  Google Scholar 

  14. Wang RY, Shyam B, Stone KH, Weker JN, Pasta M, Lee HW, Toney MF, Cui Y (2015) Reversible multivalent (monovalent, divalent, trivalent) ion insertion in open framework materials. Adv Energy Mater 5:1401869. https://doi.org/10.1002/aenm.201401869

    Article  CAS  Google Scholar 

  15. Olatunji MA, Khandaker MU, Mahmud H, Amin YM (2015) Influence of adsorption parameters on cesium uptake from aqueous solutions-a brief review. RSC Adv 5:71658–71683. https://doi.org/10.1039/C5RA10598F

    Article  CAS  Google Scholar 

  16. Vincent T, Vincent C, Barré Y, Guari Y, Le Saout G, Guibal E (2014) Immobilization of metal hexacyanoferrates in chitin beads for cesium sorption: synthesis and characterization. J Mater Chem A 2:10007. https://doi.org/10.1039/C4TA01128G

    Article  CAS  Google Scholar 

  17. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1998) Frmation of titanium oxide nanotube. Langmuir 14:3160–3163. https://doi.org/10.1021/la9713816

    Article  CAS  Google Scholar 

  18. Kasuga T, Hiramatsu M, Hoson A (1999) Titania nanotubes prepared by chemical processing. Adv Mater 11:1307–1311. https://doi.org/10.1002/(SICI)1521-4095(199910)11:15%3c1307:AID-ADMA1307%3e3.0.CO;2-H

    Article  CAS  Google Scholar 

  19. Bavykin DV, Friedrich JM, Walsh FC (2006) Protonated titanates and TiO2 nanostructured materials: synthesis, properties, and applications. Adv Mater 18:2807–2824. https://doi.org/10.1002/adma.200502696

    Article  CAS  Google Scholar 

  20. Ou H, Lo SL (2007) Review of titania nanotubes synthesized via the hydrothermal treatment: fabrication, modification, and application. Sep Purif Technol 58:179–191. https://doi.org/10.1016/j.seppur.2007.07.017

    Article  CAS  Google Scholar 

  21. Liu Z, Fang PF, Liu FW, Zhang YP, Liu XZ, Lu DZ, Li DL, Wang SJ (2014) In situ synthesis of CdS decorated titanate nanosheets with highly efficient visible-light-induced photoactivity. Appl Surf Sci 305:459–465. https://doi.org/10.1016/j.apsusc.2014.03.112

    Article  CAS  Google Scholar 

  22. Kang SM, Hwang NS, Yeom J, Park SY, Messersmith PB, Choi IS, Langer R, Anderson DG, Lee H (2012) One-step multipurpose surface functionalization by adhesive catecholamine. Adv Funct Mater 22:2949–2955. https://doi.org/10.1002/adfm.201200177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu YL, Ai KL, Lu LH (2014) Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev 114:5057–5115. https://doi.org/10.1021/cr400407a

    Article  CAS  PubMed  Google Scholar 

  24. Li F, Cheng QX, Tian Q, Yang B, Chen QY (2016) Biofouling behavior and performance of forward osmosis membranes with bioinspired surface modification in osmotic membrane bioreactor. Bioresour Technol 211:751–758. https://doi.org/10.1016/j.biortech.2016.03.169

    Article  CAS  PubMed  Google Scholar 

  25. Liu Y, Fang PF, Cheng YL, Gao YP, Chen FT, Liu Z, Dai YQ (2013) Study on enhanced photocatalytic performance of cerium doped TiO2-based nanosheets. Chem Eng J 219:478–485. https://doi.org/10.1016/j.cej.2012.12.098

    Article  CAS  Google Scholar 

  26. Yue Q, Wang MH, Sun ZK, Wang C, Wang C, Deng YH, Zhao DY (2013) A versatile ethanol-mediated polymerization of dopamine for efficient surface modification and the construction of functional core–shell nanostructures. J Mater Chem 1:6085–6093. https://doi.org/10.1039/c3tb21028f

    Article  CAS  Google Scholar 

  27. Yang JY, Luo XG, Yan TS, Lin XY (2018) Recovery of cesium from saline lake brine with potassium cobalt hexacyanoferrate-modified chrome-tanned leather scrap adsorbent. Colloid Surf A 537:268–280. https://doi.org/10.1016/j.colsurfa.2017.10.015

    Article  CAS  Google Scholar 

  28. Sureshkumar MK, Das D, Mallia MB, Gupta PC (2010) Adsorption of uranium from aqueous solution using chitosan-tripolyphosphate (CTPP) beads. J Hazard Mater 184:65–72. https://doi.org/10.1016/j.jhazmat.2010.07.119

    Article  CAS  PubMed  Google Scholar 

  29. Weber J, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div 89:31–60. https://doi.org/10.1061/JSEDAI.0000467

    Article  Google Scholar 

  30. Al-Ghouti MA, Razavi MM (2020) Water reuse: brackish water desalination using Prosopis juliflora. Environ Technol Innov 17:100614. https://doi.org/10.1016/j.eti.2020.100614

    Article  CAS  Google Scholar 

  31. Ayawei N, Ebelegi AN, Wankasi D (2017) Modelling and interpretation of adsorption isotherms. J Chem. https://doi.org/10.1155/2017/3039817

    Article  Google Scholar 

  32. Samarghandi MR, Hadi M, Moayedi S, Askari FB (2009) Two-parameter isotherms of methyl orange sorption by pinecone derived activated carbon. Iran J Environ Health Sci Eng 6:285–294

    CAS  Google Scholar 

  33. Lima EC, Hosseini-Bandegharaei A, Moreno-Piraján JC, Anastopoulos I (2019) A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J Mol Liq 273:425–434. https://doi.org/10.1016/j.molliq.2018.10.048

    Article  CAS  Google Scholar 

  34. Rhee CH, Lee JS, Chung SH (2005) Synthesis of nitrogen-doped titanium oxide nanostructures via a surfactant-free hydrothermal route. J Mater Res 20:3011–3020. https://doi.org/10.1557/JMR.2005.0376

    Article  CAS  Google Scholar 

  35. Chen DH, Huang FZ, Cao L, Cheng YB, Caruso RA (2012) Spiky mesoporous anatase titania beads: a metastable ammonium titanate-mediated synthesis. Chem-Eur J 18:13762–13769. https://doi.org/10.1002/chem.201202539

    Article  CAS  PubMed  Google Scholar 

  36. Zhao B, Chen F, Gu XN, Zhang JL (2010) Organic-stabilizer-free synthesis of layered protonic titanate nanosheets. Chem Asian J 5:1546–1549. https://doi.org/10.1002/asia.201000018

    Article  CAS  PubMed  Google Scholar 

  37. Chuang YH, Tzou YM, Wang MK, Liu CH, Chiang PN (2008) Removal of 2-chlorophenol from aqueous solution by Mg/Al layered double hydroxide (LDH) and modified LDH. Ind Eng Chem Res 47:3813–3819. https://doi.org/10.1021/ie071508e

    Article  CAS  Google Scholar 

  38. Takezawa Y, Imai H (2006) Bottom-up synthesis of titanate nanosheets with hierarchical structures and a high specific surface area. Small 2:390–393. https://doi.org/10.1002/smll.200500343

    Article  CAS  PubMed  Google Scholar 

  39. Yang HM, Hwang KS, Park CW, Lee KW (2017) Sodium-copper hexacyanoferrate-functionalized magnetic nanoclusters for the highly efficient magnetic removal of radioactive caesium from seawater. Water Res 125:81–90. https://doi.org/10.1016/j.watres.2017.08.037

    Article  CAS  PubMed  Google Scholar 

  40. Avramenko V, Bratskaya S, Zheleznov V, Sheveleva I, Voitenko O, Sergienko V (2011) Colloid stable sorbents for cesium removal: preparation and application of latex particles functionalized with transition metalsferrocyanides. J Hazard Mater 186:1343–1350. https://doi.org/10.1016/j.jhazmat.2010.12.009

    Article  CAS  PubMed  Google Scholar 

  41. Faustino PJ, Yang Y, Progar JJ, Brownell CR, Sadrieh N, May JC, Leutzinger E, Place DA, Duffy EP, Houn F (2008) Quantitative determination of cesium binding to ferric hexacyanoferrate: Prussian blue. J Pharmaceut Biomed 47:114–125. https://doi.org/10.1016/j.jpba.2007.11.049

    Article  CAS  Google Scholar 

  42. Lin X, Chen C, Chen Q, Ni JR (2011) Adsorption of Pb(II) and Cd(II) from aqueous solutions using titanate nanotubes prepared via hydrothermal method. J Hazard Mater 189:741–748. https://doi.org/10.1016/j.jhazmat.2011.03.006

    Article  CAS  Google Scholar 

  43. BakhshaSher EM, Khan S, Akhtar K, Danish EY, Fagieh TM, Qiu C, Sun YW, Romanovski V, Su XT (2022) Simultaneous preparation of humic acid and mesoporous silica from municipal sludge and their adsorption properties for U(VI). Colloid Surf A 647:129060. https://doi.org/10.1016/j.colsurfa.2022.129060

    Article  CAS  Google Scholar 

  44. Chen YW, Wang JL (2016) Removal of cesium from radioactive wastewater using magnetic chitosan beads cross-linked with glutaraldehyde. Nucl Sci Tech 27:52–57. https://doi.org/10.1007/s41365-016-0033-6

    Article  CAS  Google Scholar 

  45. Tan LQ, Wang S, Du WG, Hu T (2016) Effect of water chemistries on adsorption of Cs(I) onto graphene oxide investigated by batch and modeling techniques. Chem Eng J 292:92–97. https://doi.org/10.1016/j.cej.2016.01.073

    Article  CAS  Google Scholar 

  46. Yavari R, Huang YD, Ahmadi SJ (2011) Adsorption of cesium(I) from aqueous solution using oxidized multiwall carbon nanotubes. J Radioanal Nucl Chem 287:393–401. https://doi.org/10.1007/s10967-010-0909-6

    Article  CAS  Google Scholar 

  47. Sangvanich T, Sukwarotwat V, Wiacek RJ, Grudzien RM, Fryxell GE, Addleman RS, Timchalk C, Yantasee W (2010) Selective capture of cesium and thallium from natural waters and simulated wastes with copper ferrocyanide functionalized mesoporous silica. J Hazard Mater 182:225–231. https://doi.org/10.1016/j.jhazmat.2010.06.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mihara Y, Sikder MT, Yamagishi H, Sasaki T, Kurasaki M, Itoh S, Tanaka S (2016) Adsorption kinetic model of alginate gel beads synthesized micro particle-prussian blue to remove cesium ions from water. J Water Process Eng 10:9–19. https://doi.org/10.1016/j.jwpe.2016.01.001

    Article  Google Scholar 

  49. Awual MR, Yaita T, Miyazaki Y, Matsumura D, Shiwaku H, Taguchi T (2016) A reliable hybrid adsorbent for efficient radioactive cesium accumulation from contaminated wastewater. Sci Rep 6:19937. https://doi.org/10.1038/srep19937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yarusova SB, Shichalin OO, Belov AA, Azon SA, Buravlev IY, Golub AV, Mayorov VY, Gerasimenko AV, Papynov EK, Ivanets AI, Buravleva AA, Merkulov EB, Nepomnyushchaya VA, Kapustina OV, Gordienko PS (2022) Synthesis of amorphous KAlSi3O8 for cesium radionuclide immobilization into solid matrices using spark plasma sintering technique. Ceram Int 48:3808–3817. https://doi.org/10.1016/j.ceramint.2021.10.164

    Article  CAS  Google Scholar 

  51. Zou WH, Han RP, Chen ZZ, Zhang JH, Jie S (2006) Kinetic study of adsorption of Cu(II) and Pb(II) from aqueous solutions using manganese oxide coated zeolite in batch mode. Colloids Surf A 279:238–246. https://doi.org/10.1016/j.colsurfa.2006.01.008

    Article  CAS  Google Scholar 

  52. Malarvizhi TS, Santhi T (2013) Lignite fired fly ash modified by chemical treatment for adsorption of zinc from aqueous solution. Res Chem Intermed 39:2473–2494. https://doi.org/10.1007/s11164-012-0774-8

    Article  CAS  Google Scholar 

  53. Liu XJ, Xu QX, Li ZW, Pan BB, Ndagijimana P, Wang Y (2022) Simultaneous removal of cationic heavy metals and arsenic from drinking water by an activated carbon supported nanoscale zero-valent iron and nanosilver composite. Colloid Surf A 650:129581. https://doi.org/10.1016/j.colsurfa.2022.129581

    Article  CAS  Google Scholar 

  54. Poots V, Mckay G, Healy J (1976) The removal of acid dye from effluent using natural adsorbents—I peat. Water Res 10:1061–1066. https://doi.org/10.1016/0043-1354(76)90036-1

    Article  CAS  Google Scholar 

  55. Ho Y, McKay G (1999) Batch lead (II) removal from aqueous solution by peat: equilibrium and kinetics. Process Saf Environ Prot 77:165–173. https://doi.org/10.1205/095758299529983

    Article  CAS  Google Scholar 

  56. Zhu JH, Liu Q, Liu JY, Chen RR, Zhang HS, Li RM, Wang J (2018) Ni–Mn LDH decorated 3D Fe-inserted and N-doped carbon framework composites for efficient uranium (VI) removal. Environ Sci Nano 5:467–475. https://doi.org/10.1039/C7EN01018D

    Article  CAS  Google Scholar 

  57. Zhang L, Yang F, Zhao YC, Zhong L, Gao RH, Zhang XM, Wang T, Xue JQ (2021) Preparation of thiosemicarbazide-modified polyvinyl alcohol and its selective adsorption of Cu(II). Colloid Interfac Sci 43:100377. https://doi.org/10.1016/j.colcom.2021.100377

    Article  CAS  Google Scholar 

  58. Zhou YA, Li Y, Wang XL, Liu DX, Liu DB (2020) Preparation of amidoxime functionalized titanate nanosheets for efficient extraction of uranium from aqueous solution. J Solid State Chem 290:121562. https://doi.org/10.1016/j.jssc.2020.121562

    Article  CAS  Google Scholar 

  59. Ma J, Li F, Qian TW, Liu HF, Liu W, Zhao DY (2017) Natural organic matter resistant powder activated charcoal supported titanate nanotubes for adsorption of Pb (II). Chem Eng J 315:191–200. https://doi.org/10.1016/j.cej.2017.01.029

    Article  CAS  Google Scholar 

  60. Zhu JH, Liu Q, Li ZS, Liu JY, Zhang HS, Li RM, Wang J (2018) Efficient extraction of uranium from aqueous solution using an amino-functionalized magnetic titanate nanotubes. J Hazard Mater 353:9–17. https://doi.org/10.1016/j.jhazmat.2018.03.042

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support provided by Scientific Research Foundation for High-level Talents of Anhui University of Science and Technology (No. 2022yjrc13), Anhui Provincial Key Research and Development Project (No. S202104a06020064), the Opening Foundation of Anhui Province Engineering Laboratory for Mine Ecological Remediation (No.KS-2022-002), the Opening Foundation of Anhui Green Mine Engineering Research and Development Center in 2022, the Opening Foundation of Anhui Province Engineering Laboratory of Water and Soil Resources Comprehensive Utilization and Ecological Protection in High Groundwater Mining Area (No. 2022-WSREPMA-05). The authors express their sincere thanks and gratitude to the anonymous reviewers due to their positive comments and constructive suggestions.

Author information

Authors and Affiliations

Authors

Contributions

YZ: conceptualization, funding acquisition, data curation, validation, writing—original draft, writing—review & editing. YL: resources, validation, investigation, project administration. YS: investigation, writing—original draft. LL: investigation, data curation. RD: validation, data curation. ZJ: resources, writing—original draft. JN: software, data curation. XC: conceptualization, funding acquisition, validation, data curation, writing—review & editing.

Corresponding authors

Correspondence to Ye Li or Xiaoyang Chen.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 174 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Li, Y., Su, Y. et al. Facile synthesis of polydopamine-interlinked titanate nanosheets and copper hexacyanoferrate for highly efficient removal of Cs(I). J Radioanal Nucl Chem 332, 3191–3204 (2023). https://doi.org/10.1007/s10967-023-08948-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08948-8

Keywords

Navigation