Skip to main content
Log in

m6A mRNA methylation initiated by METTL3 inhibits KDR translation to increase the efficacy of 131I therapy in papillary thyroid carcinoma

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Papillary thyroid carcinoma (PTC) is a common malignant tumor. 131I treatment can effectively kill residual PTC microtissues and inhibit metastases. METTL3 which mediates N6 methyladenosine (m6A) modification participates in the progression of PTC. However, the biomechanism through which METTL3 regulates 131I treatment to suppress PTC remains unclear. The mRNA, protein, and m6A levels were detected by RT-qPCR, western blot, and methylated RNA immunoprecipitation (MeRIP) kit respectively. The cell apoptotic ability was measured with flow cytometry (FCM) and TUNEL double staining assays. Transwell assay was used for migration and invasion evaluation. Our results showed that METTL3 was downregulated in PTC and was upregulated by treating with 131I. Knockdown of METTL3 inhibited the suppression of viability, migration, and invasion, and the promotion of apoptosis induced by 131I treatment. Additionally, METTL3 was found to bind with KDR, and KDR reversed the effects of METTL3 knockdown on the biological behaviors of 131I-treated PTC cells. Furthermore, m6A modification of KDR induced by METTL3 was recognized by YTHDC2 in PTC, and KDR is a key factor for the PTC progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

ALKBH5:

AlkB homolog 5

ANOVA:

Analysis of variance

ATCC:

American type culture collection

BCA:

Bicinchoninic acid

CHX:

Cycloheximide

DAPI:

4',6-Diamidino-2-phenylindole

DMEM:

Dulbecco's modification of Eagle's medium

ECL:

Electro-chemi-luminescence

EMT:

Epithelial-mesenchymal transition

FBS:

Fetal bovine serum

FCM:

Flow cytometry

FTO:

FTO alpha-ketoglutarate dependent dioxygenase

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

IGF2BP1:

Insulin like growth factor 2 mRNA binding protein 1

IGF2BP2:

Insulin like growth factor 2 mRNA binding protein 2

IGF2BP3:

Insulin like growth factor 2 mRNA binding protein 3

KDR:

Kinase insert domain receptor

m6A:

N6 methyladenosine

MeRIP:

Methylated RNA immunoprecipitation

METTL3:

Methyltransferase 3

METTL14:

Methyltransferase 14

mRNA:

Messenger RNA

MUT:

Mutant

NC:

Negative control

PI:

Propidium iodide

PTC:

Papillary thyroid carcinoma

PVDF:

Polyvinylidene fluoride

RIPA:

Radio-immunoprecipitation assay

RT-qPCR:

Real-time quantitative polymerase chain reaction

SD:

Standard deviation

SDS-PAGE:

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis

Sh:

Short hairpin RNA

TC:

Thyroid carcinoma

TUNEL:

Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling

VEGF:

Vascular endothelial growth factor

WT:

Wild-type

WTAP:

WT1 associated protein

YTHDC1:

YTH N6-methyladenosine RNA binding protein C1

YTHDC2:

YTH N6-methyladenosine RNA binding protein C1

YTHDF1:

YTH N6-methyladenosine RNA binding protein F1

YTHDF2:

YTH N6-methyladenosine RNA binding protein F2

YTHDF3:

YTH N6-methyladenosine RNA binding protein F3

References

  1. Lin RX, Yang SL, Jia Y, Wu JC, Xu Z, Zhang H (2022) Epigenetic regulation of papillary thyroid carcinoma by long non-coding RNAs. Semin Cancer Biol 83:253–260

    Article  CAS  PubMed  Google Scholar 

  2. Abdullah MI, Junit SM, Ng KL, Jayapalan JJ, Karikalan B, Hashim OH (2019) Papillary thyroid cancer: genetic alterations and molecular biomarker investigations. Int J Med Sci 16:450–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Donaldson LB, Yan F, Morgan PF, Kaczmar JM, Fernandes JK, Nguyen SA, Jester RL, Day TA (2021) Hobnail variant of papillary thyroid carcinoma: a systematic review and meta-analysis. Endocrine 72:27–39

    Article  CAS  PubMed  Google Scholar 

  4. Mazzaferri EL (1997) Thyroid remnant 131I ablation for papillary and follicular thyroid carcinoma. Thyroid 7:265–271

    Article  CAS  PubMed  Google Scholar 

  5. Byrd JK, Yawn RJ, Wilhoit CS, Sora ND, Meyers L, Fernandes J, Day T (2012) Well differentiated thyroid carcinoma: current treatment. Curr Treat Opt Oncol 13:47–57

    Article  Google Scholar 

  6. Rosario PW, Mourao GF, Calsolari MR (2020) Can patients with papillary thyroid carcinoma and low postoperative thyroglobulin in the presence of clinically apparent lymph node metastases (cN1) be spared from radioiodine? Endocrine 70:552–557

    Article  CAS  PubMed  Google Scholar 

  7. Zhang Q, Lu S, Li T, Yu L, Zhang Y, Zeng H, Qian X, Bi J, Lin Y (2019) ACE2 inhibits breast cancer angiogenesis via suppressing the VEGFa/VEGFR2/ERK pathway. J Exp Clin Cancer Res 38:173

    Article  PubMed  PubMed Central  Google Scholar 

  8. Heinolainen K, Karaman S, D’Amico G, Tammela T, Sormunen R, Eklund L, Alitalo K, Zarkada G (2017) VEGFR3 modulates vascular permeability by controlling VEGF/VEGFR2 signaling. Circ Res 120:1414–1425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Krajewska J, Olczyk T, Jarzab B (2016) Cabozantinib for the treatment of progressive metastatic medullary thyroid cancer. Expert Rev Clin Pharmacol 9:69–79

    Article  CAS  PubMed  Google Scholar 

  10. Tsai ML, Lee CH, Huang LC, Chen YH, Liu WN, Lin CY, Hsu KW, Lee AW, Lin CL (2022) CRISPR-mediated knockout of VEGFR2/KDR inhibits cell growth in a squamous thyroid cancer cell line. FEBS Open Bio 12:993–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Teng P C, Liang Y, Yarmishyn A A, Hsiao Y J, Lin T Y, Lin T W, Teng Y C, Yang Y P, Wang M L, Chien C S, Luo Y H, Chen Y M, Hsu P K, Chiou S H and Chien Y (2021) RNA modifications and epigenetics in modulation of lung cancer and pulmonary diseases. Int J Mol Sci. 22.

  12. Zhu W, Wang JZ, Xu Z, Cao M, Hu Q, Pan C, Guo M, Wei JF, Yang H (2019) Detection of N6methyladenosine modification residues (review). Int J Mol Med 43:2267–2278

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang J, Wang J, Gu Q, Ma Y, Yang Y, Zhu J, Zhang Q (2020) The biological function of m6A demethylase ALKBH5 and its role in human disease. Cancer Cell Int 20:347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Guo X, Li K, Jiang W, Hu Y, Xiao W, Huang Y, Feng Y, Pan Q, Wan R (2020) RNA demethylase ALKBH5 prevents pancreatic cancer progression by posttranscriptional activation of PER1 in an m6A-YTHDF2-dependent manner. Mol Cancer 19:91–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. He J, Zhou M, Yin J, Wan J, Chu J, Jia J, Sheng J, Wang C, Yin H, He F (2021) METTL3 restrains papillary thyroid cancer progression via m(6)A/c-Rel/IL-8-mediated neutrophil infiltration. Mol Ther 29:1821–1837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhu Y, Peng X, Zhou Q, Tan L, Zhang C, Lin S, Long M (2022) METTL3-mediated m6A modification of STEAP2 mRNA inhibits papillary thyroid cancer progress by blocking the Hedgehog signaling pathway and epithelial-to-mesenchymal transition. Cell Death Dis 13:358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tao L, Tian P, Yang L, Guo X (2020) lncRNA CASC2 enhances (131)I sensitivity in papillary thyroid cancer by sponging miR-155. Biomed Res Int 2020:7183629

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lee Y A, Lee H, Im S W, Song Y S, Oh D Y, Kang H J, Won J K, Jung K C, Kwon D, Chung E J, Hah J H, Paeng J C, Kim J H, Choi J, Kim O H, Oh J M, Ahn B C, Wirth L J, Shin C H, Kim J I and Park Y J (2021) NTRK and RET fusion-directed therapy in pediatric thyroid cancer yields a tumor response and radioiodine uptake. J Clin Invest. 131.

  19. Wang X, Fu X, Zhang J, Xiong C, Zhang S, Lv Y (2020) Identification and validation of m(6)A RNA methylation regulators with clinical prognostic value in papillary thyroid cancer. Cancer Cell Int 20:203

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhang C, Zhang M, Ge S, Huang W, Lin X, Gao J, Gong J, Shen L (2019) Reduced m6A modification predicts malignant phenotypes and augmented Wnt/PI3K-Akt signaling in gastric cancer. Cancer Med 8:4766–4781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. ALKBH5 is a mammali- an RNA demethylase that impacts RNA metabolism and mouse fertility

  22. Shen C, Sheng Y, Zhu AC, Robinson S, Jiang X, Dong L, Chen H, Su R, Yin Z, Li W, Deng X, Chen Y, Hu Y, Weng H, Huang H, Prince E, Cogle CR, Sun M, Zhang B, Chen C, Marcucci G, He C, Qian Z, Chen J (2020) RNA demethylase ALKBH5 selectively promotes tumorigenesis and cancer stem cell self-renewal in acute myeloid leukemia. Cell Stem Cell 27:64-80.e9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen Q, Yu WY, Zhang HH, Zhang SZ, Fang J, Wu F, Ying HZ, Yu CH (2020) PBX3 promotes tumor growth and angiogenesis via activation of AT1R/VEGFR2 pathway in papillary thyroid carcinoma. Biomed Res Int 2020:8954513

    PubMed  PubMed Central  Google Scholar 

  24. Bentzien F, Zuzow M, Heald N, Gibson A, Shi Y, Goon L, Yu P, Engst S, Zhang W, Huang D, Zhao L, Vysotskaia V, Chu F, Bautista R, Cancilla B, Lamb P, Joly AH, Yakes FM (2013) In vitro and in vivo activity of cabozantinib (XL184), an inhibitor of RET, MET, and VEGFR2, in a model of medullary thyroid cancer. Thyroid 23:1569–1577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Asghar MY, Magnusson M, Kemppainen K, Sukumaran P, Lof C, Pulli I, Kalhori V, Tornquist K (2015) Transient receptor potential canonical 1 (TRPC1) channels as regulators of sphingolipid and VEGF receptor expression: implications for thyroid cancer cell migration and proliferation. J Biol Chem 290:16116–16131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ma L, Chen T, Zhang X, Miao Y, Tian X, Yu K, Xu X, Niu Y, Guo S, Zhang C, Qiu S, Qiao Y, Fang W, Du L, Yu Y, Wang J (2021) The m(6)A reader YTHDC2 inhibits lung adenocarcinoma tumorigenesis by suppressing SLC7A11-dependent antioxidant function. Redox Biol 38:101801

    Article  CAS  PubMed  Google Scholar 

  27. Hsu PJ, Zhu Y, Ma H, Guo Y, Shi X, Liu Y, Qi M, Lu Z, Shi H, Wang J, Cheng Y, Luo G, Dai Q, Liu M, Guo X, Sha J, Shen B, He C (2017) Ythdc2 is an N(6)-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Res 27:1115–1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tanabe A, Tanikawa K, Tsunetomi M, Takai K, Ikeda H, Konno J, Torigoe T, Maeda H, Kutomi G, Okita K, Mori M, Sahara H (2016) RNA helicase YTHDC2 promotes cancer metastasis via the enhancement of the efficiency by which HIF-1alpha mRNA is translated. Cancer Lett 376:34–42

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

WN conceived the study, analyzed the data and wrote the manuscript; The author read and approved the final version of the manuscript.

Corresponding author

Correspondence to Wei Nie.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Ethics and consent

This research was approved by the Ethics Committee of PET/CT Center of CITIC Huizhou Hospital.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, W. m6A mRNA methylation initiated by METTL3 inhibits KDR translation to increase the efficacy of 131I therapy in papillary thyroid carcinoma. J Radioanal Nucl Chem 332, 2749–2758 (2023). https://doi.org/10.1007/s10967-023-08945-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08945-x

Keywords

Navigation