Skip to main content
Log in

Sandwich-like 2D/2D ZnIn2S4/Ti3C2 composite for highly efficient photocatalytic reduction of U(VI)

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Novel sandwich-like ZnIn2S4/Ti3C2 composites with strong interfacial coupling were prepared by a facile solvothermal approach for U(VI) photocatalytic reduction immobilization. The integration of Ti3C2 nanosheets into ZnIn2S4 hierarchical structures endowed the composite outstanding photocatalytic performance through improving the utilization of solar energy and boosting the separation of photogenerated electrons and holes, evidenced by a fast reaction rate of 0.0247 min−1, which was 3.20 times of that for pristine ZnIn2S4. The corresponding U(VI) removal efficiency of 50 ppm U(VI) solution reached 96.1% under visible light irradiation without sacrificial agents. In addition, the excellent stability and reusability of ZnIn2S4/Ti3C2 has been demonstrated.

Graphical Abstract

Sandwich-like 2D/2D ZnIn2S4/Ti3C2 composite for highly efficient photocatalytic reduction of U(VI)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ma M, Wang R, Xu L, Xu M, Liu S (2020) Emerging health risks and underlying toxicological mechanisms of uranium contamination: lessons from the past two decades. Environ Int 145:106107. https://doi.org/10.1016/j.envint.2020.106107

    Article  CAS  PubMed  Google Scholar 

  2. Yin M, Sun J, He H, Liu J, Zhong Q, Zeng Q, Huang X, Wang J, Wu Y, Chen D (2021) Uranium re-adsorption on uranium mill tailings and environmental implications. J Hazard Mater 416:126153. https://doi.org/10.1016/j.jhazmat.2021.126153

    Article  CAS  PubMed  Google Scholar 

  3. Schnug E, Lottermoser BG (2013) Fertilizer-derived uranium and its threat to human health. Environ Sci Technol 47:2433–2434. https://doi.org/10.1021/es4002357

    Article  CAS  PubMed  Google Scholar 

  4. Chen T, Yu K, Dong C, Yuan X, Gong X, Lian J, Cao X, Li M, Zhou L, Hu B, He R, Zhu W, Wang X (2022) Advanced photocatalysts for uranium extraction: elaborate design and future perspectives. Coordin Chem Rev 467:214615. https://doi.org/10.1016/j.ccr.2022.214615

    Article  CAS  Google Scholar 

  5. Xu C, Li T, Hu C, Guo H, Ye J, Li L, Liu W, Niu L (2021) Waterborne uranium causes toxic effect and thyroid disruption in zebrafish larvae. Ecotoxicol Environ Saf 208:111585. https://doi.org/10.1016/j.ecoenv.2020.111585

    Article  CAS  PubMed  Google Scholar 

  6. N D, Panda B, S C, M V P, Singh DK, A L R, Sahoo SK, (2021) Spatio-temporal variations of Uranium in groundwater: Implication to the environment and human health. Sci Total Environ 775:145787. https://doi.org/10.1016/j.scitotenv.2021.145787

    Article  CAS  Google Scholar 

  7. Beltrami D, Cote G, Mokhtari H, Courtaud B, Moyer BA, Chagnes A (2014) Recovery of uranium from wet phosphoric acid by solvent extraction processes. Chem Rev 114:12002–12023. https://doi.org/10.1021/cr5001546

    Article  CAS  PubMed  Google Scholar 

  8. Mei D, Liu L, Yan B (2023) Adsorption of uranium (VI) by metal-organic frameworks and covalent-organic frameworks from water. Coordin Chem Rev 475:214917. https://doi.org/10.1016/j.ccr.2022.214917

    Article  CAS  Google Scholar 

  9. Wang Z, Hu H, Huang L, Lin F, Liu S, Wu T, Alharbi NS, Rabah SO, Lu Y, Wang X (2020) Graphene aerogel capsulated precipitants for high efficiency and rapid elimination of uranium from water. Chem Eng J 396:125272. https://doi.org/10.1016/j.cej.2020.125272

    Article  CAS  Google Scholar 

  10. Yu K, Shao P, Meng P, Chen T, Lei J, Yu X, He R, Yang F, Zhu W, Duan T (2020) Superhydrophilic and highly elastic monolithic sponge for efficient solar-driven radioactive wastewater treatment under one sun. J Hazard Mater 392:122350. https://doi.org/10.1016/j.jhazmat.2020.122350

    Article  CAS  PubMed  Google Scholar 

  11. Jing L, Zhang X, Ali I, Chen X, Wang L, Chen H, Han M, Shang R, Wu Y (2020) Usage of microbial combination degradation technology for the remediation of uranium contaminated ryegrass. Environ Int 144:106051. https://doi.org/10.1016/j.envint.2020.106051

    Article  CAS  PubMed  Google Scholar 

  12. Lai JL, Zhang-Xuan D, Xiao-Hui JI, Xue-Gang L (2020) Absorption and interaction mechanisms of uranium & cadmium in purple sweet potato (Ipomoea batatas L.). J Hazard Mater 400:123264. https://doi.org/10.1016/j.jhazmat.2020.123264

    Article  CAS  PubMed  Google Scholar 

  13. Lee M, Yang M (2010) Rhizofiltration using sunflower (Helianthus annuus L.) and bean (Phaseolus vulgaris L. var. vulgaris) to remediate uranium contaminated groundwater. J Hazard Mater 173:589–596. https://doi.org/10.1016/j.jhazmat.2009.08.127

    Article  CAS  PubMed  Google Scholar 

  14. Ishag A, Li Y, Zhang N, Wang H, Guo H, Mei P, Sun Y (2020) Environmental application of emerging zero-valent iron-based materials on removal of radionuclides from the wastewater: a review. Environ Res 188:109855. https://doi.org/10.1016/j.envres.2020.109855

    Article  CAS  PubMed  Google Scholar 

  15. Wang L, Song H, Yuan L, Li Z, Zhang Y, Gibson JK, Zheng L, Chai Z, Shi W (2018) Efficient U(VI) reduction and sequestration by Ti2CTx MXene. Environ Sci Technol 52:10748–10756. https://doi.org/10.1021/acs.est.8b03711

    Article  CAS  PubMed  Google Scholar 

  16. Li P, Wang J, Wang Y, Liang J, He B, Pan D, Fan Q, Wang X (2019) Photoconversion of U(VI) by TiO2: an efficient strategy for seawater uranium extraction. Chem Eng J 365:231–241. https://doi.org/10.1016/j.cej.2019.02.013

    Article  CAS  Google Scholar 

  17. Deng H, Li ZJ, Wang L, Yuan LY, Lan JH, Chang ZY, Chai ZF, Shi WQ (2019) Nanolayered Ti3C2 and SrTiO3 composites for photocatalytic reduction and removal of uranium(VI). ACS Appl Nano Mater 2:2283–2294. https://doi.org/10.1021/acsanm.9b00205

    Article  CAS  Google Scholar 

  18. Liang PL, Yuan LY, Deng H, Wang XC, Wang L, Li ZJ, Luo SZ, Shi WQ (2020) Photocatalytic reduction of uranium(VI) by magnetic ZnFe2O4 under visible light. Appl Catal B Environ 267:118688. https://doi.org/10.1016/j.apcatb.2020.118688

    Article  CAS  Google Scholar 

  19. Zhu Q, Xu Q, Du M, Zeng X, Zhong G, Qiu B, Zhang J (2022) Recent progress of metal sulfide photocatalysts for solar energy conversion. Adv Mater 34:e2202929. https://doi.org/10.1002/adma.202202929

    Article  CAS  PubMed  Google Scholar 

  20. Li Z, Zhang Z, Dong Z, Yu F, Ma M, Wang Y, Wang Y, Liu Y, Liu J, Cao X, Liu Y (2022) Solar light-responsive CdS/UiO-66-NH2 for ultrafast uranium reduction from uranium-containing mine wastewater without external sacrificial agents. Sep Purif Technol 283:120195. https://doi.org/10.1016/j.seppur.2021.120195

    Article  CAS  Google Scholar 

  21. Liang P, Yuan L, Du K, Wang L, Li Z, Deng H, Wang X, Luo S-Z, Shi W (2021) Photocatalytic reduction of uranium(VI) under visible light with 2D/1D Ti3C2/CdS. Chem Eng J 420:129831. https://doi.org/10.1016/j.cej.2021.129831

    Article  CAS  Google Scholar 

  22. Yang R, Mei L, Fan Y, Zhang Q, Zhu R, Amal R, Yin Z, Zeng Z (2021) ZnIn2S4-based photocatalysts for energy and environmental applications. Small Methods 5:2100887. https://doi.org/10.1002/smtd.202100887

    Article  CAS  Google Scholar 

  23. Pan Y, Yuan X, Jiang L, Yu H, Zhang J, Wang H, Guan R, Zeng G (2018) Recent advances in synthesis, modification and photocatalytic applications of micro/nano-structured zinc indium sulfide. Chem Eng J 354:407–431. https://doi.org/10.1016/j.cej.2018.08.028

    Article  CAS  Google Scholar 

  24. Wang J, Sun S, Zhou R, Li Y, He Z, Ding H, Chen D, Ao W (2021) A review: synthesis, modification and photocatalytic applications of ZnIn2S4. J Mater Sci Technol 78:1–19. https://doi.org/10.1016/j.jmst.2020.09.045

    Article  CAS  Google Scholar 

  25. Zhang J, Pan Z-H, Yang Y, Wang P-F, Pei C-Y, Chen W, Huang G-B (2022) Boosting the catalytic activity of a step-scheme In2O3/ZnIn2S4 hybrid system for the photofixation of nitrogen. Chinese J Catal 43:265–275. https://doi.org/10.1016/s1872-2067(21)63801-9

    Article  CAS  Google Scholar 

  26. He Y, Chen C, Liu Y, Yang Y, Li C, Shi Z, Han Y, Feng S (2022) Quantitative evaluation of carrier dynamics in full-spectrum responsive metallic ZnIn2S4 with indium vacancies for boosting photocatalytic CO2 reduction. Nano Lett 22:4970–4978. https://doi.org/10.1021/acs.nanolett.2c01666

    Article  CAS  PubMed  Google Scholar 

  27. He Y, Rao H, Song K, Li J, Yu Y, Lou Y, Li C, Han Y, Shi Z, Feng S (2019) 3D hierarchical ZnIn2S4 nanosheets with rich Zn vacancies boosting photocatalytic CO2 reduction. Adv Funct Mater 29:1905153. https://doi.org/10.1002/adfm.201905153

    Article  CAS  Google Scholar 

  28. Zhang G, Chen D, Li N, Xu Q, Li H, He J, Lu J (2018) Preparation of ZnIn2S4 nanosheet-coated CdS nanorod heterostructures for efficient photocatalytic reduction of Cr(VI). Appl Catal B Environ 232:164–174. https://doi.org/10.1016/j.apcatb.2018.03.017

    Article  CAS  Google Scholar 

  29. Zhang J, Yuan G, Wang H, Wu J, Yang G, Jia Q, Zhang S, Li F, Zhang H (2023) Preparation of core/shell-structured ZnFe2O4@ZnIn2S4 catalysts and its ultrafast microwave catalytic reduction performance for aqueous Cr(VI). Chem Eng J 451:138182. https://doi.org/10.1016/j.cej.2022.138182

    Article  CAS  Google Scholar 

  30. Li K, Zhang S, Li Y, Fan J, Lv K (2021) MXenes as noble-metal-alternative co-catalysts in photocatalysis. Chinese J Catal 42:3–14. https://doi.org/10.1016/s1872-2067(20)63630-0

    Article  CAS  Google Scholar 

  31. Lei W, Zhou T, Pang X, Xue S, Xu Q (2022) Low-dimensional MXenes as noble metal-free co-catalyst for solar-to-fuel production: progress and prospects. J Mater Sci Technol 114:143–164. https://doi.org/10.1016/j.jmst.2021.10.029

    Article  CAS  Google Scholar 

  32. Murali G, Reddy Modigunta JK, Park YH, Lee JH, Rawal J, Lee SY, In I, Park SJ (2022) A review on MXene synthesis, stability, and photocatalytic applications. ACS Nano 16:13370–13429. https://doi.org/10.1021/acsnano.2c04750

    Article  CAS  PubMed  Google Scholar 

  33. Sun Y, Meng X, Dall’Agnese Y, Dall’Agnese C, Duan S, Gao Y, Chen G, Wang XF (2019) 2D MXenes as co-catalysts in photocatalysis: synthetic methods. Nano-Micro Lett 11:79. https://doi.org/10.1007/s40820-019-0309-6

    Article  CAS  Google Scholar 

  34. Xie X, Zhang N, Tang Z-R, Anpo M, Xu Y-J (2018) Ti3C2Tx MXene as a Janus cocatalyst for concurrent promoted photoactivity and inhibited photocorrosion. Appl Catal B Environ 237:43–49. https://doi.org/10.1016/j.apcatb.2018.05.070

    Article  CAS  Google Scholar 

  35. Zuo G, Wang Y, Teo WL, Xie A, Guo Y, Dai Y, Zhou W, Jana D, Xian Q, Dong W, Zhao Y (2020) Ultrathin ZnIn2S4 nanosheets anchored on Ti3C2Tx MXene for photocatalytic H2 evolution. Angew Chem Int Ed Engl 59:11287–11292. https://doi.org/10.1002/anie.202002136

    Article  CAS  PubMed  Google Scholar 

  36. Guo S, Luo H, Bao Y, Li Y, Guan H, Zhu Y (2022) Construction of hierarchical Ti3C2Tx MXene/ZnIn2S4 heterostructures for efficiently photocatalytic reduction of Cr(VI) under visible light. Appl Surf Sci 575:151753. https://doi.org/10.1016/j.apsusc.2021.151753

    Article  CAS  Google Scholar 

  37. Su T, Men C, Chen L, Chu B, Luo X, Ji H, Chen J, Qin Z (2022) Sulfur vacancy and Ti3C2Tx cocatalyst synergistically boosting interfacial charge transfer in 2D/2D Ti3C2Tx/ZnIn2S4 heterostructure for enhanced photocatalytic hydrogen evolution. Adv Sci 9:2103715. https://doi.org/10.1002/advs.202103715

    Article  CAS  Google Scholar 

  38. Kim Y-J, Kim SJ, Seo D, Chae Y, Anayee M, Lee Y, Gogotsi Y, Ahn CW, Jung H-T (2021) Etching mechanism of monoatomic aluminum layers during MXene synthesis. Chem Mater 33:6346–6355. https://doi.org/10.1021/acs.chemmater.1c01263

    Article  CAS  Google Scholar 

  39. Wang H, Sun Y, Wu Y, Tu W, Wu S, Yuan X, Zeng G, Xu ZJ, Li S, Chew JW (2019) Electrical promotion of spatially photoinduced charge separation via interfacial-built-in quasi-alloying effect in hierarchical Zn2In2S5/Ti3C2(O, OH)x hybrids toward efficient photocatalytic hydrogen evolution and environmental remediation. Appl Catal B Environ 245:290–301. https://doi.org/10.1016/j.apcatb.2018.12.051

    Article  CAS  Google Scholar 

  40. Liu Y, Gao Y, Chen L, Li L, Ding D, Dai Z (2023) MnOx-decorated oxygen-doped g-C3N4 with enhanced photocatalytic activity for efficient removal of uranium(VI). Sep Purif Technol 307:122794. https://doi.org/10.1016/j.seppur.2022.122794

    Article  CAS  Google Scholar 

  41. Li J-Y, Li Y-H, Zhang F, Tang Z-R, Xu Y-J (2020) Visible-light-driven integrated organic synthesis and hydrogen evolution over 1D/2D CdS-Ti3C2Tx MXene composites. Appl Catal B Environ 269:118783. https://doi.org/10.1016/j.apcatb.2020.118783

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (Grant Nos. 22176190, 12275177, U2067212 and U20B2019), the National Science Fund for Distinguished Young Scholars (Grant No. 21925603), and Youth Innovation Promotion Association CAS (2021010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Wang.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13766 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Ouyang, J., Zhang, P. et al. Sandwich-like 2D/2D ZnIn2S4/Ti3C2 composite for highly efficient photocatalytic reduction of U(VI). J Radioanal Nucl Chem 332, 2759–2770 (2023). https://doi.org/10.1007/s10967-023-08942-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08942-0

Keywords

Navigation