Skip to main content
Log in

Electrochemical adsorption of cesium using a nickel hexacyanoferrate-doped porous carbon electrode

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In present paper, a porous carbon composite electrode, doped with nickel hexacyanoferrate, was prepared for electrochemical removal of cesium ions from aqueous solutions. Based upon the applied voltage of −3 V, a 100% adsorption was achieved in 3 h for the initial Cs+ concentration of 10 ppm in solution. The maximum capacity was 155.2 mg g−1 under optimized electrochemical conditions. The electrode was regenerated by applying a reverse voltage of 3 V. The removal efficiency remained 95% even after five consecutive adsorption–desorption cycles. The results suggested that the developed electrochemical method has strong potential for extracting cesium from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10
Fig. 11

Similar content being viewed by others

References

  1. Park JH, Kim H, Kim M, Lim JM, Kim S (2020) Sequential removal of radioactive Cs by electrochemical adsorption and desorption reaction using core-shell structured carbon nanofiber-prussian blue composites. Chem Eng J 399:125817

    Article  CAS  Google Scholar 

  2. Kato M, Okada Y, Hirai S, Minai Y, Saito S, Shibukawa M (2016) Comparative analysis of distributions of radioactive cesium and potassium and stable cesium, potassium, and strontium in brown rice grains contaminated with radioactive materials released by the Fukushima Daiichi nuclear power plant accident. J Radioanal Nucl Chem 310:247–252

    Article  CAS  Google Scholar 

  3. Rong Y, Li S, Niu JJ, Wang ZD, Hao XG, Song CW, Wang TH, Guan GQ (2021) Carbon-based electroactive ion exchange materials: Ultrahigh removal efficiency and ion selectivity for rapid removal of Cs+ ions. Sep Purif Technol 274:119056

    Article  CAS  Google Scholar 

  4. Castrillejo M, Casacuberta N, Breier CF, Pike SM, Buesseler KO (2016) Reassessment of 90Sr, 137Cs, and 134Cs in the coast off Japan derived from the Fukushima Dai-ichi nuclear accident. Environ Sci Technol 50:173–180

    Article  CAS  PubMed  Google Scholar 

  5. Peedikakkandy L, Chatterjee S, Pal AJ (2020) Bandgap engineering and efficient conversion of a ternary perovskite (Cs3Bi2I9) to a double perovskite (Cs2NaBiI6) with the aid of alkali metal sulfide. J Phys Chem C 124:10878–10886

    Article  CAS  Google Scholar 

  6. Songsiri N, Rempel GL, Prasassarakich P (2017) Liquid-phase synthesis of isoprene from MTBE and formalin using cesium salts of silicotungstic acid. Mol Cata 439:41–49

    Article  CAS  Google Scholar 

  7. Liu JM, Shen LL, Chen Y, Zhao Y, Zhang Y, Jin MFF, Yang HS, Zhang YJ, Xiang WD, Liang XJ (2019) Highly luminescent and ultrastable cesium lead halide perovskite nanocrystal glass for plant-growth lighting engineering. J Mate Chem C 7:13606–13612

    Article  CAS  Google Scholar 

  8. Liu HY, Tong LZ, Su MH, Chen DY, Song G, Zhou Y (2023) The latest research trends in the removal of cesium from radioactive wastewater: A review based on data-driven and visual analysis. Sci Total Environ 869:161664

    Article  CAS  PubMed  Google Scholar 

  9. Liu XJ, Wu JL, Wang JL (2018) Removal of Cs(I) from simulated radioactive wastewater by three forward osmosis membranes. Chem Eng J 344:353–362

    Article  CAS  Google Scholar 

  10. Nayak SK, Choudhary MK (2012) Microwave-assisted synthesis of 1,3-dialkyl ethers of calix[4]arenes: application to the synthesis of cesium selective calix[4]crown-6 ionophores. Tetrahedron Lett 53:141–144

    Article  CAS  Google Scholar 

  11. Fiskum SK, Pease LF, Peterson RA (2020) Review of ion exchange technologies for cesium removal from caustic tank waste. Solvent Extr Ion Exc 38:573–611

    Article  CAS  Google Scholar 

  12. Chen SQ, Hu JY, Han SJ, Guo YF, Belzile N, Deng TL (2020) A review on emerging composite materials for cesium adsorption and environmental remediation on the latest decade. Sep Purif Technol 251:117340

    Article  CAS  Google Scholar 

  13. Feng MB, Zhang P, Zhou HC, Sharma VK (2018) Water-stable metal-organic frameworks for aqueous removal of heavy metals and radionuclides: a review. Chemosphere 209:783–800

    Article  CAS  PubMed  Google Scholar 

  14. Ishag A, Li Y, Zhang N, Wang HH, Guo H, Mei P, Sun YB (2020) Environmental application of emerging zero-valent iron-based materials on removal of radionuclides from the wastewater: a review. Environ Res 188:109855

    Article  CAS  PubMed  Google Scholar 

  15. Wani AA, Shahadat M, Ali SW, Ahammad SZ, Uddin MK (2022) Recent advances and future perspectives of polymer-based magnetic nanomaterials for detection and removal of radionuclides: a review. J Mol Liq 365:119976

    Article  Google Scholar 

  16. Awual MR, Hasan MM, Asiri AM, Rahman MM (2019) Cleaning the arsenic(V) contaminated water for safe-guarding the public health using novel composite material. Compos B Eng 171:294–301

    Article  CAS  Google Scholar 

  17. Khandaker S, Toyohara Y, Saha GC, Awual MR, Kuba T (2020) Development of synthetic zeolites from bio-slag for cesium adsorption: Kinetic, isotherm and thermodynamic studies. J Water Process Eng 33:101055

    Article  Google Scholar 

  18. Awual MR, Yaita T, Kobayashi T, Shiwaku H, Suzuki S (2020) Improving cesium removal to clean-up the contaminated water using modified conjugate material. J Environl Chem Eng 8:103684

    Article  CAS  Google Scholar 

  19. Awual MR, Yaita T, Taguchi T, Shiwaku H, Suzuki S, Okamoto Y (2014) Selective cesium removal from radioactive liquid waste by crown ether immobilized new class conjugate adsorbent. J Hazard Mater 278:227–235

    Article  CAS  PubMed  Google Scholar 

  20. Awual MR, Yaita T, Miyazaki Y, Matsumura D, Shiwaku H, Taguchi T (2016) A reliable hybrid adsorbent for efficient radioactive cesium accumulation from contaminated wastewater. Sci Rep 6:19937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Awual MR (2016) Ring size dependent crown ether based mesoporous adsorbent for high cesium adsorption from wastewater. Chem Eng J 303:539–546

    Article  CAS  Google Scholar 

  22. Awual MR, Suzuki S, Taguchi T, Shiwaku H, Okamoto Y, Yaita T (2014) Radioactive cesium removal from nuclear wastewater by novel inorganic and conjugate adsorbents. Chem Eng J 242:127–135

    Article  CAS  Google Scholar 

  23. Awual MR, Miyazaki Y, Taguchi T, Shiwaku H, Yaita T (2016) Encapsulation of cesium from contaminated water with highly selective facial organic-inorganic mesoporous hybrid adsorbent. Chem Eng J 291:128–137

    Article  CAS  Google Scholar 

  24. Awual MR (2016) Assessing of lead(III) capturing from contaminated wastewater using ligand doped conjugate adsorbent. Chem Eng J 289:65–73

    Article  CAS  Google Scholar 

  25. Caccin M, Giacobbo F, Da Ros M, Besozzi L, Mariani M (2013) Adsorption of uranium, cesium and strontium onto coconut shell activated carbon. J Radioanal Nucl Chem 297:9–18

    Article  CAS  Google Scholar 

  26. Alarifi A, Hanafi H (2010) Adsorption of cesium, thallium, strontium and cobalt radionuclides using activated carbon. J At Mol Sci 1:292–300

    Google Scholar 

  27. Ofomaja AE, Pholosi A, Naidoo EB (2015) Application of raw and modified pine biomass material for cesium removal from aqueous solution. Ecol Eng 82:258–266

    Article  Google Scholar 

  28. Khandaker S, Chowdhury MF, Awual MR, Islam A, Kuba T (2021) Efficient cesium encapsulation from contaminated water by cellulosic biomass based activated wood charcoal. Chemosphere 262:127801

    Article  CAS  PubMed  Google Scholar 

  29. Hasan MN, Shenashen MA, Hasan MM, Znad H, Awual MR (2021) Assessing of cesium removal from wastewater using functionalized wood cellulosic adsorbent. Chemosphere 270:128668

    Article  CAS  PubMed  Google Scholar 

  30. Rahayu NWST, Park J, Yang M, Wang S, Lee M (2020) Cesium removal from a water system using a polysulfone carrier containing nitric acid-treated bamboo charcoal. J Environ Radioactiv 225:106374

    Article  CAS  Google Scholar 

  31. Khandaker S, Toyohara Y, Kamida S, Kuba T (2018) Adsorptive removal of cesium from aqueous solution using oxidized bamboo charcoal. Water Resour Ind 19:35–46

    Article  Google Scholar 

  32. Chen SQ, Dong YN, Wang HH, Sun JJ, Wang JF, Zhang SJ, Dong HF (2022) Highly efficient and selective cesium recovery from natural brine resources using mesoporous Prussian blue analogs synthesized by ionic liquid-assisted strategy. Resour Conserv Recycl 186:106542

    Article  CAS  Google Scholar 

  33. Qin JY, Yan LX, Han SJ, Yang XN, Guo YF, Li L, Deng TL (2023) Tannic acid-assisted prussian blue anchoring on membranes for rapid and recyclable removal of cesium. J Water Process Eng 52:103565

    Article  Google Scholar 

  34. Yaqub M, Nguyen MN, Lee W (2023) Synthesis of heated aluminum oxide particles impregnated with Prussian blue for cesium and natural organic matter adsorption: Experimental and machine learning modeling. Chemosphere 313:137336

    Article  CAS  PubMed  Google Scholar 

  35. Wang JL, Zhuang ST, Liu Y (2018) Metal hexacyanoferrates-based adsorbents for cesium removal. Coordin Chem Rev 374:430–438

    Article  CAS  Google Scholar 

  36. Kim Y, Eom HH, Kim D, Harbottle D, Lee JW (2021) Adsorptive removal of cesium by electrospun nanofibers embedded with potassium copper hexacyanoferrate. Sep Purif Technol 255:117745

    Article  CAS  Google Scholar 

  37. Yang SB, Liao SK, Ren XM, Li Y, Ma YY, Zhang ZH (2020) Highly selective enrichment of radioactive cesium from solution by using zinc hexacyanoferrate(III)-functionalized magnetic bentonite. J Colloid Interf Sci 580:171–179

    Article  CAS  Google Scholar 

  38. Mimura H, Lehto J, Harjula R (1997) Ion exchange of cesium on potassium nickel hexacyanoferrate (II)s. J Nucl Sci Technol 34:484–489

    Article  CAS  Google Scholar 

  39. Zhuang ST, Wang JL (2019) Removal of cesium ions using nickel hexacyanoferrates-loaded bacterial cellulose membrane as an effective adsorbent. J Mol Liq 294:111682

    Article  CAS  Google Scholar 

  40. Du ZH, Jia MC, Wang XW (2013) Cesium removal from solution using PAN-based potassium nickel hexacyanoferrate(II) composite spheres. J Radioanal Nucl Chem 298:167–177

    Article  CAS  Google Scholar 

  41. Dwivedi C, Pathak SK, Kumar M, Tripathi SC, Bajaj PN (2015) Preparation and characterization of potassium nickel hexacyanoferrate-loaded hydrogel beads for the removal of cesium ions. Environ Sci Water Res Technol 1:153–160

    Article  CAS  Google Scholar 

  42. Chang CY, Chau LK, Hu WP, Wang CY, Liao JH (2008) Nickel hexacyanoferrate multilayers on functionalized mesoporous silica supports for selective sorption and sensing of cesium. Micropor Mesopor Mat 109:505–512

    Article  CAS  Google Scholar 

  43. Liu C, Hsu PC, Xie J, Zhao J, Wu T, Wang HT, Liu W, Zhang JS, Chu S, Cui Y (2017) A half-wave rectified alternating current electrochemical method for uranium extraction from seawater. Nat Energy 2:17007

    Article  CAS  Google Scholar 

  44. Lilga MA, Orth RJ, Sukamto JPH, Haight SM, Schwartz DT (1997) Metal ion separations using electrically switched ion exchange. Sep Purif Technol 11:147–158

    Article  CAS  Google Scholar 

  45. Chen R, Asai M, Fukushima C, Ishizaki M, Kurihara M, Arisaka M, Nankawa T, Watanabe M, Kawamoto T, Tanaka H (2015) Column study on electrochemical separation of cesium ions from wastewater using copper hexacyanoferrate film. J Radioanal Nucl Chem 303:1491–1495

    Article  CAS  Google Scholar 

  46. Qiu ST, Chen ZH, Zhuo H, Hu YJ, Liu QZ, Peng XW, Zhong LX (2019) Using FeCl3 as a solvent, template, and activator to prepare B, N co-doping porous carbon with excellent supercapacitance. ACS Sustain Chem Eng 7:15983–15994

    Article  CAS  Google Scholar 

  47. Yin CS, Li JJ, Zhou YW, Zhang HN, Fang PF, He CQ (2018) Enhancement in proton conductivity and thermal stability in nafion membranes induced by incorporation of sulfonated carbon nanotubes. ACS Appl Mater Inter 10:14026–14035

    Article  CAS  Google Scholar 

  48. Kamal H, Abd-Elrahim FM, Lotfy S (2014) Characterization and some properties of cellulose acetate-co-polyethylene oxide blends prepared by the use of gamma irradiation. J Radiat Res Appl Sci 7:146–153

    CAS  Google Scholar 

  49. Hasan MN, Salman MS, Hasan MM, Kubra KT, Sheikh MC, Rehan AI, Rasee AI, Awual ME, Waliullah RM, Hossain MS, Islam A, Khandaker S, Alsukaibi AKD, Alshammari HM, Awual MR (2023) Assessing sustainable Lutetium (III) ions adsorption and recovery using novel composite hybrid nanomaterials. J Mo Struct 1276:134795

    Article  CAS  Google Scholar 

  50. Naushad M, Alqadami AA, Al-Kahtani AA, Ahamad T, Awual MR, Tatarchuk T (2019) Adsorption of textile dye using para-aminobenzoic acid modified activated carbon: Kinetic and equilibrium studies. J Mol Liq 296:112075

    Article  CAS  Google Scholar 

  51. Zhang XX, Wu Y, Wu H, Wei YZ (2016) Adsorption behaviors of strontium using macroporous silica based hexagonal tungsten oxide. Sci China Chem 59:601–608

    Article  CAS  Google Scholar 

  52. Wang WW, Luo JQ, Wei WW, Liu SJ, He JH, Ma JG (2021) An asymmetric pulsed current-assisted electrochemical method for Sr(II) extraction using supramolecular composites. Chemosphere 271:129531

    Article  CAS  PubMed  Google Scholar 

  53. Zhuang ST, Zhu KK, Hu J, Wang JL (2022) Selective and effective adsorption of cesium ions by metal hexacyanoferrates (MHCF, M = Cu Co, Ni) modified chitosan fibrous biosorbent. Sci Total Environ 835:155575

    Article  CAS  PubMed  Google Scholar 

  54. Zhang YM, Xiong YW, Xian Q, He XM, Dan H, Ding Y (2023) Efficient adsorption and in situ solidification of cesium from aqueous solution using mesoporous MnO2@SBA-15. Ann Nucl Energy 180:109509

    Article  CAS  Google Scholar 

  55. Bakhotmah DA, Hussein MA, El-Said W, Ismael MH, Elshehy E (2022) Efficient removal of cesium and strontium from an aqueous solution using a zirconosilicate/vanadium oxide nanocomposite. J Disper Sci Technol 855:1–11

    Article  Google Scholar 

  56. Awual MR (2015) A novel facial composite adsorbent for enhanced copper(II) detection and removal from wastewater. Chem Eng J 266:368–375

    Article  CAS  Google Scholar 

  57. Hasan MM, Kubra KT, Hasan MN, Awual ME, Salman MS, Sheikh MC, Rehan AI, Rasee AI, Waliullah RM, Islam MS, Khandaker S, Islam A, Hossain MS, Alsukaibi AKD, Alshammari HM, Awual MR (2023) Sustainable ligand-modified based composite material for the selective and effective cadmium (II) capturing from wastewater. J Mol Liq 371:121125

    Article  CAS  Google Scholar 

  58. Liu C, Ge H, Yan L, Yu X, Guo Y, Belzile N, Deng T (2023) Readily regenerated porous fiber-supported metal tin sulfide for rapid and selective removal of cesium from wastewater. J Clean Prod 401:136729

    Article  CAS  Google Scholar 

  59. Wang ZD, Sun SB, Hao XG, Ma XL, Guan GQ, Zhang ZL, Liu SB (2012) A facile electrosynthesis method for the controllable preparation of electroactive nickel hexacyanoferrate/polyaniline hybrid films for H2O2 detection. Sens Actuators B Chem 171–172:1073–1080

    Article  Google Scholar 

  60. Zhang HG, Kim YK, Hunter TN, Brown AP, Lee JW, Harbottle D (2017) Organically modified clay with potassium copper hexacyanoferrate for enhanced Cs+ adsorption capacity and selective recovery by flotation. J Mater Chem A 5:15130–15143

    Article  CAS  Google Scholar 

  61. Yang HJ, Luo M, Luo L, Wang HX, Hu DD, Lin J, Wang X, Wang YL, Wang SA, Bu XH, Feng PY, Wu T (2016) Highly selective and rapid uptake of radionuclide cesium based on robust zeolitic chalcogenide via stepwise ion-exchange strategy. Chem Mater 28:8774–8780

    Article  CAS  Google Scholar 

  62. Li WJ, Han C, Cheng G, Chou SL, Liu HK, Dou SX (2019) Chemical properties, structural properties, and energy storage applications of prussian blue aanalogues. Small 15:e1900470

    Article  PubMed  Google Scholar 

  63. Hayashi H, Aoki S, Takaishi M, Sato Y, Abe H (2019) An XAFS study of Cs adsorption by the precipitation bands of Mn-Fe-based Prussian blue analogues spontaneously formed in agarose gel. Phys Chem Chem Phys 21:22553–22562

    Article  CAS  PubMed  Google Scholar 

  64. Chen T, Jin GP, Meng GJ, Lv XY, Yu YX, Chen CN (2019) Recovery of cesium using NiHCF/NiAl-LDHs/CCFs composite by two-stage membrane-free ESIX process. J Environ Chem Eng 7:102799

    Article  CAS  Google Scholar 

  65. Huo JB, Yu GC, Wang JL (2021) Selective adsorption of cesium (I) from water by Prussian blue analogues anchored on 3D reduced graphene oxide aerogel. Sci Total Environ 761:143286

    Article  CAS  PubMed  Google Scholar 

  66. Bok-Badura J, Kazek-Kęsik A, Karoń K, Jakóbik-Kolon A (2022) Highly efficient copper hexacyanoferrate-embedded pectin sorbent for radioactive cesium ions removal. Water Resour Ind 28:100190

    Article  CAS  Google Scholar 

  67. Kiener J, Limousy L, Jeguirim M, Le Meins JM, Hajjar Garreau S, Bigoin G, Ghimbeu CM (2019) Activated carbon/transition metal (Ni, In, Cu) hexacyanoferrate nanocomposites for cesium adsorption. Materials 12:1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ri SH, Kim YN, Im SJ, Choe SG, Kim CH (2023) Selective separation of cesium from radioactive liquid waste by potassium copper hexacyanoferrate (II)-clinoptilolite composite. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-023-08821-8

    Article  Google Scholar 

  69. Soliman AM, Madbouly HA, El Sheikh ES, Khalil M, Massad A (2021) Selective removal and immobilization of cesium from aqueous solution using sludge functionalized with potassium copper hexacyanoferrate: a low-cost adsorbent. J Radioanal Nucl Chem 330:207–223

    Article  CAS  Google Scholar 

  70. Trung ND, Ping N, Lan LTH, Dan HK (2021) Synthesis, characterization, and caesium adsorbent application of trigonal zinc hexacyanoferrate (II) nanoparticles. J Environ Chem Eng 9:106772

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the financial support from the National Natural Science Foundation of China (Nos. 22066004, 22166002, 22261001). The authors also thank Fundamental Science on Radioactive Geology and Exploration Technology Laboratory for sample characterization assistance (2022RGET16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shujuan Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Lu, S., Dai, C. et al. Electrochemical adsorption of cesium using a nickel hexacyanoferrate-doped porous carbon electrode. J Radioanal Nucl Chem 332, 2589–2600 (2023). https://doi.org/10.1007/s10967-023-08923-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08923-3

Keywords

Navigation