Skip to main content
Log in

Automated multi-column chromatographic separation of short-lived 242g, 240Am, 237U and 72Ga from fresh fission products

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

We present an automated separation method to simultaneously isolate short-lived activation products 242g, 240Am, 237U, 72Ga from fresh fission products prior to gamma spectrometric analysis. On the basis of multi-column chromatographic units (HDEHP resin, TBP resin, DGA resin, TEVA resin, Al2O3, activated carbon) assembly, smart media compatibility between adjacent columns, chromatographic conditions optimization and process automation design, a modularized and streamline separation procedure was developed. The established method allows better recoveries of 93%, 91% and 97% for americium, uranium and gallium separately and excellent decontamination factors of more than 105 for fission products even for large volume of samples. Because of highly efficient removal of interferents, this method coupled with well-type high-purity germanium (HPGe) gamma spectrometers achieved highly sensitive and selective analysis of activation products in spiked complicated matrix samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Douglas M, Friese JI, Greenwood LR, Farmer OT III, Thomas ML, Maiti TC, Finn EC, Garofoli SJ, Gassman PL, Huff MM, Schulte SM, Smith SC, Thomas KK, Bachelor PP (2009) Separation and quantification of chemically diverse analytes in neutron irradiated fissile materials. J Radioanal Nucl Chem 282:63–68

    Article  CAS  Google Scholar 

  2. Morley SM, Seiner B, Finn E, Greenwood L, Smith SC, Gregory S, Haney M, Lucas D, Arrigo L, Beacham T, Swearingen K, Friese J, Douglas M, Metz L (2015) Integrated separation scheme for measuring a suite of fission and activation products from a fresh mixed fission and activation product sample. J Radioanal Nucl Chem 304:509–515

    Article  CAS  Google Scholar 

  3. Morrison SS (2015) Activation product analysis in the presence of fission products. Washington State University, Pullman

    Google Scholar 

  4. Morrison SS, Seiner BN, Eggemeyer TA, Haney MM, Hines CC, King MD, Metz LA, Morley SM, Uhnak NE, Wall DE, Zhang ZC, Clark SB (2016) A chemical separation procedure using ionic liquid extraction for 59Fe and 55Fe quantification. J Radioanal Nucl Chem 307:2479–2485

    Article  CAS  Google Scholar 

  5. Morrison SS, Clark SB, Eggemeyer TA, Finn EC, Hines CC, King MD, Metz LA, Morley SM, Snow MS, Wall DE, Seiner BN (2017) Activation product analysis in a mixed sample containing both fission and neutron activation products. J Radioanal Nucl Chem 314:2501–2506

    Article  CAS  Google Scholar 

  6. Bennett KT, Kozimor SA, Manard BT, Mocko V, Pacheco SD, Schake AR, Wu R, Olson AC (2019) Rapid activation product separations from fission products and soil matrixes. J Radioanal Nucl Chem 322:281–289

    Article  CAS  Google Scholar 

  7. McNamara BK, Morrison S, Pierson B (2021) Potential defect structure effects in the volatility separation of sub-picogram quantities of fission and activation products from an irradiated UO2 matrix. J Radioanal Nucl Chem 327:21–30

    Article  CAS  Google Scholar 

  8. Rogozkin BD, Belov GV, Bergman GA (2009) Gallium removal during pyrochemical reprocessing of weapons plutonium into oxide fuel. At Energ 107:69–72

    Article  CAS  Google Scholar 

  9. Saravanan T, Arunmuthu K, Lahiri BB, Bagavathiappan S, Venkiteswaran CN, Philip J, Divakar R, Joseph J, Jayakumar T (2015) Dimensional measurements on 112 GWd/t irradiated MOX fuel pins using X-ray radiography. Ann Nucl Energy 83:8–13

    Article  CAS  Google Scholar 

  10. Firestone RB (1996) Table of isotopes, CD ROM edition, 8th edn. Wiley, New York

    Google Scholar 

  11. Kalamara A, Vlastou R, Kokkoris M (2016) Investigation of the 241Am(n,2n)240Am cross section. Phys Rev C 93:014610

    Article  Google Scholar 

  12. Hashimoto T, Sotobayashi T, Kobayashi K (1978) Measurement of average cross section for 238U(n,2n)237U reaction. J Nucl Sci Technol 15:626–628

    Article  CAS  Google Scholar 

  13. Gordon G, Hemingway JD (1995) Practical gamma-ray spectrometry [M]. Willey, England, p 48

    Google Scholar 

  14. Gosman A, Kliský V, Kašpar J, Vodolan P (1988) Preparation and application of 237U for the study of heterogeneous isotope exchange on an ion exchanger. J Radioanal Nucl Chem 121:375–383

    Article  CAS  Google Scholar 

  15. Sabel’nikov AV, Maslov OD, Gustova MV, Belov AG, Dmitriev SN (2006) Preparation of 237 U by 238 U (γ, n) photonuclear reaction on an electron accelerator, MT-25 microtron. Radiochemistry 48:186–190

    Article  Google Scholar 

  16. Maslov OD, Bozhikov GA, Ivanov PI, Gustova MV, Belov AG, Dmitriev SN (2010) Use of a nanostructured material for separation of 238U and 237U produced by the photonuclear reaction 238U(γ, n)237U. Radiochemistry 52(1):87–89

    Article  CAS  Google Scholar 

  17. Moore FL, Reynolds SA (1959) Radiochemical determination of uranium-237. Anal Chem 31(6):1080–1081

    Article  CAS  Google Scholar 

  18. Ueno K, Asano M, Kawasaki M (1971) Separation of uranium from fission products. J Nucl Sci Technol 8(3):129–132

    Article  CAS  Google Scholar 

  19. Shinohara N, Hatsukawa Y, Hata K, Kohno N (1997) Radiochemical determination of neutron capture cross sections of 241Am. J Nucl Sci Technol 34(7):613–621

    Article  CAS  Google Scholar 

  20. Felker LK, Benker DE, Chattin FR, Stacy RG (1995) Separation of americium, curium, and plutonium from irradiated targets. Sep Sci Technol 30(7–9):1769–1778

    Article  CAS  Google Scholar 

  21. Ueno K, Watanabe K, Sagawa C, Ishimori T (1974) Separation of transplutonium elements from neutron irradiated americium-241. J Nucl Sci Technol 11(1):8–14

    Article  CAS  Google Scholar 

  22. Kamoshida M, Fukasawa T (1996) Solvent extraction of americium (VI) by tri-n-butyl phosphate. J Nucl Sci Technol 33(5):403–408

    Article  CAS  Google Scholar 

  23. Myasoedov VF, Molochnikova NP (1970) A procedure for concentrating americium and curium combined with their separation from plutonium and fission products using a chelating resin. J Radioanal Chem 6:67–73

    Article  CAS  Google Scholar 

  24. Braun T, Ghersini G (1975) Extraction chromatography. Elsevier Scientific Publishing Company, Amsterdam

    Google Scholar 

  25. Bertelsen ER, Jackson JA, Shafer JC (2020) A survey of extraction chromatographic f-element separations developed by E. P. Horwitz. Solvent Extr Ion Exch 38:251–289

    Article  CAS  Google Scholar 

  26. Haney MM, Seiner BN, Finn EC, Friese JI (2016) Rapid quantitation of uranium from mixed fission product samples. J Radioanal Nucl Chem 307:1737–1742

    Article  CAS  Google Scholar 

  27. Ellison PA (2011) I.Nuclear production reaction and chemical isolation procedure for 240Am II.New superheavy element isotopes: 242Pu(48Ca,5n) 285114. Electronic Thesis and Dissertations, UC Berkeley

  28. Shimada A, Kameo Y, Takahashi K (2013) A new method to analyze 242mAm in low-level radioactive waste based on extraction chromatography and β-ray spectrometry. Anal Chem 85:7726–7731

    Article  CAS  PubMed  Google Scholar 

  29. Cerdà V (2019) Automation of radiochemical analysis by flow techniques—a review, TrACTrends. Anal Chem 118:352–367

    Google Scholar 

  30. Qiao JX (2020) Dynamic flow approaches for automated radiochemical analysis in environmental, nuclear and medical applications. Molecules 25:1462–1488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fan JL, Lu JC, Zhang LL, Yu GS, Huang P, Shi QL, Liu ZC, Li XS, Bai T (2016) Automated separation of short-lived 72Ga from fresh fission products based on tandem column chromatography. J Radioanal Nucl Chem 309(2):467–476

    CAS  Google Scholar 

  32. Dry DE, Bauer E, Petersen LA (2005) Rapid separation of fresh fission products. J Radioanal Nucl Chem 263(1):19–22

    Article  CAS  Google Scholar 

  33. Horwitz EP, Dietz ML, Chiarizia R, DiamOnd H (1995) Separation and preconcentration of actinides by extraction chromatography using a supported liquid anion exchanger: application to the characterization of high-level nuclear waste solutions. Anal Chim Acta 310:63–78

    Article  CAS  Google Scholar 

  34. Tomažič B, Siekierski S (1966) Separation of some fission products from uranium (VI) by reversed–phase partition chromatography. J Chromatog 21:98–104

    Article  Google Scholar 

  35. Tamura N, Yonezawa C (1974) Extraction-chromatographic separation of uranium from long-lived fission products using tributyl phosphate. J Radioanal chem 20:455–462

    Article  CAS  Google Scholar 

  36. Yamaura M, Matsuda HT (1997) Actinides and fission products extraction behavior in TBP/XAD7 chromatographic column. J Radioanal Nucl Chem 224(1–2):83–87

    Article  CAS  Google Scholar 

  37. Horwitz EP, Dietz ML, Chiarizia R, Diamond H (1992) Separation and preconcentration of uranium from acidic media by extraction chromatography. Anal Chim Acta 266:25–37

    Article  CAS  Google Scholar 

  38. Horwitz EP, McAlister DR, Bond AH, Barrans RE (2005) Novel extraction of chromatographic resins based on tetraalkyldiglycolamides: chracterization and potential applications. Solvent Extr IOn Exch 23:319–344

    Article  CAS  Google Scholar 

  39. Kosyakov VN, Yerin EA (1978) Separation of transplutonium and rare-earth elements by extraction with HDEHP from DTPA solutions. J Radioanal Chem 43:37–51

    Article  CAS  Google Scholar 

  40. Fan JL, Duan L, Wang YF, Zhang XB, Chen GW, Liang JF, Tian XJ, Li ZM (2022) Automated separation of Am from Sm by two-stage polymer-based HDEHP extraction chromatography. Colloids Surf A 654:130080–130089

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Ning Yang from Xi’an pulse reactor (China) for preparation of the radionuclides.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinlong Fan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, J., Wang, Y., Li, Z. et al. Automated multi-column chromatographic separation of short-lived 242g, 240Am, 237U and 72Ga from fresh fission products. J Radioanal Nucl Chem 332, 2667–2678 (2023). https://doi.org/10.1007/s10967-023-08920-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08920-6

Keywords

Navigation