Skip to main content
Log in

Extraction and separation of thorium from cerium and lanthanum by Cyphos® IL 101 ionic liquid

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A novel split anion extraction system was developed to separate thorium from cerium and lanthanum nitrate solutions. The ionic liquid Cyphos® IL 101 with chloride as the anion was used without extra extractants in the extraction process. The results showed efficient separation of thorium and the extraction mechanism is believed to be based on co-extraction with nitrate anion. The maximum loading capacity for thorium was 1395.26 mg/L and the extracted metals were stripped using EDTA solution with 0.5 M NaCl. This split anion extraction system provides a safe, green, and economical method for separating thorium from rare earth elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Das N, Das D (2013) Recovery of rare earth metals through biosorption: an overview. J Rare Earths 31:933–943. https://doi.org/10.1016/S1002-0721(13)60009-5

    Article  CAS  Google Scholar 

  2. Lu Y, Bi Y, Bai Y, Liao W (2013) Extraction and separation of thorium and rare earths from nitrate medium with p-phosphorylated calixarene. J Chem Technol Biotechnol 88:1836–1840. https://doi.org/10.1002/jctb.4035

    Article  CAS  Google Scholar 

  3. Nasab ME, Sam A, Milani SA (2011) Determination of optimum process conditions for the separation of thorium and rare earth elements by solvent extraction. Hydrometallurgy 106:141–147. https://doi.org/10.1016/j.hydromet.2010.12.014

    Article  CAS  Google Scholar 

  4. Li Y, Lu Y, Bai Y, Liao W (2012) Extraction and separation of thorium and rare earths with 5,11,17,23-tetra (diethoxyphosphoryl)-25,26,27,28-tetraacetoxycalix[4]arene. J Rare Earths 30:1142–1145. https://doi.org/10.1016/S1002-0721(12)60195-1

    Article  CAS  Google Scholar 

  5. Lu Y, Wei H, Zhang Z et al (2016) Selective extraction and separation of thorium from rare earths by a phosphorodiamidate extractant. Hydrometallurgy 163:192–197. https://doi.org/10.1016/j.hydromet.2016.04.008

    Article  CAS  Google Scholar 

  6. Wang L, Yu Y, Huang X et al (2013) Toward greener comprehensive utilization of bastnaesite: simultaneous recovery of cerium, fluorine, and thorium from bastnaesite leach liquor using HEH(EHP). Chem Eng J 215–216:162–167. https://doi.org/10.1016/j.cej.2012.09.126

    Article  CAS  Google Scholar 

  7. Altaş Y, Tel H, İnan S et al (2018) An experimental design approach for the separation of thorium from rare earth elements. Hydrometallurgy 178:97–105. https://doi.org/10.1016/j.hydromet.2018.04.009

    Article  CAS  Google Scholar 

  8. Wasserscheid P, Keim W (2000) Ionic liquids—new “solutions” for transition metal catalysis. Angew Chem Int Ed 39:3772–3789

    Article  CAS  Google Scholar 

  9. Binnemans K (2007) Lanthanides and actinides in ionic liquids lanthanides and actinides in ionic liquids. Chem Rev 107:2592–2614. https://doi.org/10.1021/cr050979c

    Article  CAS  PubMed  Google Scholar 

  10. Regel-Rosocka M (2009) Extractive removal of zinc(II) from chloride liquors with phosphonium ionic liquids/toluene mixtures as novel extractants. Sep Purif Technol 66:19–24. https://doi.org/10.1016/j.seppur.2008.12.002

    Article  CAS  Google Scholar 

  11. Zuo Y, Liu Y, Chen J, de Li Q (2008) The separation of cerium(IV) from nitric acid solutions containing thorium(IV) and lanthanides (III) using pure [C8mim]PF6 as extracting phase. Ind Eng Chem Res 47:2349–2355. https://doi.org/10.1021/ie071486w

    Article  CAS  Google Scholar 

  12. Wu Q, Zhang F, Huang QG et al (2022) A novel one-step strategy for extraction and solidification of Th(IV) based on self-assembly driven by malonamide-based [DC18DMA]+ ionic liquids. Chem Eng J 430:132717. https://doi.org/10.1016/j.cej.2021.132717

    Article  CAS  Google Scholar 

  13. Zhang F, Wu Q, Yan JX et al (2022) An integrated strategy for the extraction and solidification of Th(IV) ions from aqueous HNO3 solution based on self-assembly triggered by [DODMA]+[DGA] ionic liquids. Sep Purif Technol 282:120111. https://doi.org/10.1016/j.seppur.2021.120111

    Article  CAS  Google Scholar 

  14. Fu X, Zhang F, Wu Q et al (2021) The separation of thorium and rare earth elements using [A336][NO3]: insight into a new extraction mechanism. J Radioanal Nucl Chem 327:1251–1258. https://doi.org/10.1007/s10967-020-07590-y

    Article  CAS  Google Scholar 

  15. Zuo Y, Chen J, Li D (2008) Reversed micellar solubilization extraction and separation of thorium(IV) from rare earth(III) by primary amine N1923 in ionic liquid. Sep Purif Technol 63:684–690. https://doi.org/10.1016/j.seppur.2008.07.014

    Article  CAS  Google Scholar 

  16. Vander Hoogerstraete T, Wellens S, Verachtert K, Binnemans K (2013) Removal of transition metals from rare earths by solvent extraction with an undiluted phosphonium ionic liquid: Separations relevant to rare-earth magnet recycling. Green Chem 15:919–927. https://doi.org/10.1039/c3gc40198g

    Article  CAS  Google Scholar 

  17. Riaño S, Binnemans K (2015) Extraction and separation of neodymium and dysprosium from used NdFeB magnets: an application of ionic liquids in solvent extraction towards the recycling of magnets. Green Chem 17:2931–2942. https://doi.org/10.1039/c5gc00230c

    Article  Google Scholar 

  18. Regadío M, van der Hoogerstraete T, Banerjee D, Binnemans K (2018) Split-anion solvent extraction of light rare earths from concentrated chloride aqueous solutions to nitrate organic ionic liquids. RSC Adv 8:34754–34763. https://doi.org/10.1039/c8ra06055j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Larsson K, Binnemans K (2015) Separation of rare earths by split-anion extraction. Hydrometallurgy 156:206–214. https://doi.org/10.1016/j.hydromet.2015.04.020

    Article  CAS  Google Scholar 

  20. Sobekova Foltova S, van der Hoogerstraete T, Banerjee D, Binnemans K (2019) Samarium/cobalt separation by solvent extraction with undiluted quaternary ammonium ionic liquids. Sep Purif Technol 210:209–218. https://doi.org/10.1016/j.seppur.2018.07.069

    Article  CAS  Google Scholar 

  21. Vander Hoogerstraete T, Binnemans K (2014) Highly efficient separation of rare earths from nickel and cobalt by solvent extraction with the ionic liquid trihexyl(tetradecyl)phosphonium nitrate: a process relevant to the recycling of rare earths from permanent magnets and nickel metal hydride batte. Green Chem 16:1594–1606. https://doi.org/10.1039/c3gc41577e

    Article  CAS  Google Scholar 

  22. Teksöz S, Acar Ç, Ünak P (2009) Hydrolytic behavior of Th4+, UO22+, and Ce3+ ions at various temperatures. J Chem Eng Data 54:1183–1188. https://doi.org/10.1021/je800601m

    Article  CAS  Google Scholar 

  23. Jun L, Zhenggui W, Deqian L et al (1998) Recovery of Ce(IV) and Th(IV) from rare earths(III) with Cyanex 923. Hydrometallurgy 50:77–87. https://doi.org/10.1016/S0304-386X(98)00051-6

    Article  CAS  Google Scholar 

  24. Bentouhami E, Bouet GM, Meullemeestre J et al (2004) Physicochemical study of the hydrolysis of rare-earth elements (III) and thorium (IV). C R Chim 7:537–545. https://doi.org/10.1016/j.crci.2004.01.008

    Article  CAS  Google Scholar 

  25. Lommelen R, Onghena B, Binnemans K (2020) Cation effect of chloride salting agents on transition metal ion hydration and solvent extraction by the basic extractant methyltrioctylammonium chloride. Inorg Chem 59:13442–13452. https://doi.org/10.1021/acs.inorgchem.0c01821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang Y, Huang C, Li F et al (2017) Process for the separation of thorium and rare earth elements from radioactive waste residues using Cyanex® 572 as a new extractant. Hydrometallurgy 169:158–164. https://doi.org/10.1016/j.hydromet.2017.01.005

    Article  CAS  Google Scholar 

  27. Zhao J, Zuo Y, Li D, Liu S (2004) Extraction and separation of cerium(IV) from nitric acid solutions containing thorium(IV) and rare earths(III) by DEHEHP. J Alloys Compd 374:438–441. https://doi.org/10.1016/j.jallcom.2003.11.057

    Article  CAS  Google Scholar 

  28. Hennig C, Ikeda-Ohno A, Kraus W et al (2013) Crystal structure and solution species of Ce(III) and Ce(IV) formates: from mononuclear to hexanuclear complexes. Inorg Chem 52:11734–11743. https://doi.org/10.1021/ic400999j

    Article  CAS  PubMed  Google Scholar 

  29. Bilal BA, Müller E (1992) Thermodynamic study of Ce4+/Ce3+ redox reaction in aqueous solutions at elevated temperatures: 1. Reduction potential and hydrolysis equilibria of Ce4+ in HC1O4 solutions. Z Nat Sect A J Phys Sci 47:974–984. https://doi.org/10.1515/zna-1992-0908

    Article  CAS  Google Scholar 

  30. Billard I, Ouadi A, Gaillard C (2011) Liquid-liquid extraction of actinides, lanthanides, and fission products by use of ionic liquids: from discovery to understanding. Anal Bioanal Chem 400:1555–1566. https://doi.org/10.1007/s00216-010-4478-x

    Article  CAS  PubMed  Google Scholar 

  31. Marszałkowska B, Regel-Rosocka M, Nowak Ł, Wiśniewski M (2010) Quaternary phosphonium salts as effective extractants of zinc(II) and iron(III) ions from acidic pickling solutions. Pol J Chem Technol 12:1–5. https://doi.org/10.2478/v10026-010-0039-5

    Article  Google Scholar 

  32. Roosen J, Binnemans K (2014) Adsorption and chromatographic separation of rare earths with EDTA- and DTPA-functionalized chitosan biopolymers. J Mater Chem A Mater 2:1530–1540. https://doi.org/10.1039/c3ta14622g

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is supported by Ege University Scientific Research Projects Coordination Unit. Project Number: FGA-2019-20375.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Şenol Sert.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 157 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sert, Ş., Yusan, S. Extraction and separation of thorium from cerium and lanthanum by Cyphos® IL 101 ionic liquid. J Radioanal Nucl Chem 332, 2601–2611 (2023). https://doi.org/10.1007/s10967-023-08919-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08919-z

Keywords

Navigation