Skip to main content
Log in

Indoor radon (222Rn) measurements and assessment of human risk in the dwellings of Edirne (Türkiye)

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A 222Rn survey and analysis for dwellings in Edirne (Türkiye) were performed to secure the radiological safety of persons and to provide information on the reduction of 222Rn exposure. Measurements of the 222Rn activity concentration, together with meteorological conditions were carried out using an AlphaGuard 2000 Pro monitor. Excess lifetime cancer risks (ELCRs) and annual effective dose rates (AEDs) were estimated to indicate associated human health risks. The mean indoor radon concentration was within the reference value of 200–300 Bq m−3 as suggested by International Commission on Radiological Protection (ICRP) and World Health Organization (WHO).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Thumvijit T, Chanyotha S, Sriburee S, Hongsriti P, Tapanya M, Kranrod C, Tokonami S (2020) Identifying indoor radon sources in pa Miang, Chiang Mai. Thail Sci Rep 10(1):1–14

    Google Scholar 

  2. Chen J, Harley NH (2018) A review of indoor and outdoor radon equilibrium factors—part I: 222Rn. Health Phys 115(4):490–499

    Article  CAS  PubMed  Google Scholar 

  3. Dinh Chau N, Dulinski M, Jodlowski P, Nowak J, Rozanski K, Sleziak M, Wachniew P (2011) Natural radioactivity in groundwater–a review. Isot Environ Health Stud 47(4):415–437

    Article  Google Scholar 

  4. Inácio M, Soares S, Almeida P (2017) Radon concentration assessment in water sources of public drinking of Covilhã’s county, Portugal. J Radiat Res Appl Sci 10(2):135–139

    Google Scholar 

  5. Sabbarese C, Ambrosino F, D’Onofrio A (2021) Development of radon transport model in different types of dwellings to assess indoor activity concentration. J Environ Radioact 227:106501

    Article  CAS  PubMed  Google Scholar 

  6. Senitkova IJ, Kraus M (2019) Seasonal and floor variations of indoor radon concentration. In: IOP conference series: earth and environmental science IOP publishing 221(1):012127

  7. Udovicic V, Veselinovic N, Maletic D, Banjanac R, Dragic A, Jokovic D, Savkovic ME (2020) Radon variability due to floor level in two typical residential buildings in Serbia. Nukleonika 65(2):121–125

    Article  CAS  Google Scholar 

  8. Baltrėnas P, Grubliauskas R, Danila V (2020) Seasonal variation of indoor radon concentration levels in different premises of a university building. Sustainability 12(15):6174

    Article  Google Scholar 

  9. Kellenbenz KR, Shakya KM (2021) Spatial and temporal variations in indoor radon concentrations in Pennsylvania, USA from 1988 to 2018. J Environ Radioact 233:106594

    Article  CAS  PubMed  Google Scholar 

  10. Kim SH, Park JM, Kim H (2020) The prevalence of stroke according to indoor radon concentration in South Koreans: nationwide cross section study. Medicine 99(4):e18859

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sicilia I, Aparicio S, González M, Anaya JJ, Frutos B (2022) Radon transport, accumulation patterns, and mitigation techniques applied to closed spaces. Atmosphere 13(10):1692

    Article  Google Scholar 

  12. Florică Ş, Burghele BD, Bican-Brişan N, Begy R, Codrea V, Cucoş A, Sainz C (2020) The path from geology to indoor radon. Environ Geochem Health 42(9):2655–2665

    Article  PubMed  Google Scholar 

  13. Özden S (2022) Assessment of natural radioactivity levels and radiological hazard parameters of soils collected from Bulgaria-Turkey border region. Eur Phys J Plus 137(12):1368

    Article  Google Scholar 

  14. Gundersen LC, Schumann RR, Otton JK, Dubiel RF, Owen DE, Dickinson KA (1992) Geology of radon in the United States. Geol Soc Am Spec Pap 271:1–16

    Google Scholar 

  15. Beir VI (1999) Report of the committee on the biological effects of ionizing radiation. National Research Council

  16. EPAU (2003) EPA assessment of risks from radon in homes. Office of radiation and indoor air. United States Environmental Protection Agency, Washington

    Google Scholar 

  17. World Health Organization (2009) WHO handbook on indoor radon: a public health perspective. World Health Organization, Türkiye

    Google Scholar 

  18. Stoulos S, Ioannidou A (2020) Radon and its progenies variation in the urban polluted atmosphere of the Mediterranean city of Thessaloniki, Greece. Environ Sci Pollut Res 27(1):1160–1166

    Article  CAS  Google Scholar 

  19. Belete GD, Shiferaw AM (2022) A review of studies on the seasonal variation of indoor radon-222 concentration. Oncol Rev 16:10570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. ICRP (2009) Application of the Commission's Recommendations for the Protection of People in Emergency Exposure Situations. ICRP Publication 109. Ann. ICRP 39 (1)

  21. Özler HM, Aydın A (2008) Hydrochemical and microbiological quality of groundwater in West Thrace Region of Turkey. Environ Geol 54(2):355–363

    Article  Google Scholar 

  22. Gunes F (2017) Medicinal plants used in the Uzunkopru district of Edirne, Turkey. Acta Societatis Botanicorum Poloniae 86(4)

  23. Karbuz İ (2016) Uzunköprü (Edirne)’nün İklim Özellikleri. Int J Soc Sci. https://doi.org/10.9761/Jasss3530

    Article  Google Scholar 

  24. AlphaGuard (2008) User manual portable radon monitor “AlphaGUARD”, 12/98.Saphymo GmbH Heerstraẞe 149, D60488. Frankfurt am Main/Germany. http://www.saphymo.de Accessed 10 March 2023

  25. Aydogan D, Pinar A, Elmas A, Bal OT, Yuksel S (2013) Imaging of subsurface lineaments in the southwestern part of the Thrace Basin from gravity data. Earth Planets Space 65(4):299–309

    Article  Google Scholar 

  26. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) (2006) Sources and effects of ionizing radiation. Report to the General Assembly, with Scientific Annexes, UNSCEAR, New York

  27. ICRP (2007) The 2007 recommendations of the ınternational commission on radiological protection. ICRP Publication 103. Ann. ICRP, vol 37, No (2–4)

  28. United Nations Scientific Committee on the Effects of Atomic Radiation (2000) Ionizing radiation: exposure due to natural radiation sources. United Nations, New York

    Google Scholar 

  29. Alkan T, Karadenız Ö (2014) Indoor 222Rn levels and effective dose estimation of academic staff in Izmir-Turkey. Biomed Environ Sci 27(4):259–267

    CAS  PubMed  Google Scholar 

  30. Hubbard LM, Hagberg N, Enflo A (1992) Temperature effect on radon dynamics in two Swedish dwellings. Radiat Prot Dosim 45(1–4):381–386

    Article  CAS  Google Scholar 

  31. Gonencgil B (2013) Climate characteristics of Thrace and observed temperature-precipitation trends. International Balkan Annual Conference

  32. Otoo F, Darko EO, Garavaglia M, Giovani C, Pividore S, Andam AB, Inkoom S (2018) Seasonal indoor radon studies in buildings of Accra metropolis of greater accra region of Ghana. Radioprotection 53(3):199–206

    Article  CAS  Google Scholar 

  33. Venoso G, De Cicco F, Flores B, Gialanella L, Pugliese M, Roca V, Sabbarese C (2009) Radon concentrations in schools of the Neapolitan area. Radiat Meas 44(1):127–130

    Article  CAS  Google Scholar 

  34. Vaupotic J, Sikovec M, Kobal I (2000) Systematic indoor radon and gamma-ray measurements in Slovenian schools. Health Phys 78(5):559–562

    Article  CAS  PubMed  Google Scholar 

  35. Planinić J, Šmit G, Faj Z, Šuveljak B, Vuković B, Radolić V (1995) Radon in schools and dwellings of Osijek. J Radioanal Nucl Chem 191(1):45–51

    Article  Google Scholar 

  36. Clouvas A, Xanthos S, Takoudis G (2011) Indoor radon levels in Greek schools. J Environ Radioact 102(9):881–885

    Article  CAS  PubMed  Google Scholar 

  37. Stojanovska Z, Januseski J, Bossew P, Zunic ZS, Tollefsen T, Ristova M (2011) Seasonal indoor radon concentration in FYR of Macedonia. Radiat Meas 46(6–7):602–610

    Article  CAS  Google Scholar 

  38. Poncela LQ, Fernández PL, Arozamena JG, Sainz C, Fernández JA, Mahou ES, Cascón MC (2004) Natural gamma radiation map (MARNA) and indoor radon levels in Spain. Environ Int 29(8):1091–1096

    Article  Google Scholar 

  39. Szacsvai K, Cosma C, Cucos A (2012) Indoor radon exposure in Cluj-Napoca city, Romania. In: Paper presented at the first east European radon symposium–FERAS

  40. Alghamdi AS, Aleissa KA (2014) Influences on indoor radon concentrations in Riyadh, Saudi Arabia. Radiat Meas 62:35–40

    Article  CAS  Google Scholar 

  41. Kim YJ, Lee HY, Kim CS, Chang BU, Rho BH, Kim CK, Tokonami S (2005) Indoor radon, thoron, and thoron daughter concentrations in Korea. In: International Congress Series, Elsevier, vol 1276, pp 46-49

  42. Cheng J, Guo Q, Ren T (2002) Radon levels in China. J Nucl Sci Technol 39(6):695–699

    Article  CAS  Google Scholar 

  43. Somsunun K, Prapamontol T, Pothirat C, Liwsrisakun C, Pongnikorn D, Fongmoon D, Tokonami S (2022) Estimation of lung cancer deaths attributable to indoor radon exposure in upper northern Thailand. Sci Rep 12(1):1–10

    Article  Google Scholar 

  44. Celebi N, Ataksor B, Taskın H, Bingoldag NA (2015) Indoor radon measurements in Turkey dwellings. Radiat Prot Dosim 167(4):626–632

    Article  CAS  Google Scholar 

  45. Koksal EM, Celebi N, Ozcinar B (1993) Indoor 222Rn concentrations in Istanbul houses. Health phys 65(1):87–88

    Article  CAS  PubMed  Google Scholar 

  46. Örgün Y, Altınsoy N, Şahin SY, Ataksor B, Çelebi N (2008) A study of indoor radon levels in rural dwellings of Ezine (Çanakkale, Turkey) using solid-state nuclear track detectors. Radiat Prot Dosim 131(3):379–384

    Article  Google Scholar 

  47. Kam E, Bozkurt A (2007) Environmental radioactivity measurements in Kastamonu region of northern Turkey. Appl Radiat Isot 65(4):440–444

    Article  CAS  PubMed  Google Scholar 

  48. Taşköprü C, İçhedef M, Saç MM (2023) Diurnal, monthly, and seasonal variations of indoor radon concentrations concerning meteorological parameters. Environ Monit Assess 195(1):25

    Article  Google Scholar 

Download references

Acknowledgements

Use of facilities at the Central Research Laboratory of Kırklareli University for AlphaGuard 2000 Pro monitor is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Özden.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tezcan, F., Aközcan, S. & Özden, S. Indoor radon (222Rn) measurements and assessment of human risk in the dwellings of Edirne (Türkiye). J Radioanal Nucl Chem 332, 4629–4640 (2023). https://doi.org/10.1007/s10967-023-08918-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08918-0

Keywords

Navigation