Skip to main content
Log in

Stacked target irradiations and radiochemical separations for simultaneous production of short-lived Ni and Ir isotopes

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A method was developed for simultaneous production of neutron-deficient Ni and Ir isotopes by irradiation of stacked targets with a 50.5 MeV proton beam, followed by radiochemical separations to remove excess target material. The target, irradiation configuration, and post-irradiation radiochemical separations were developed and tested in a proof-of-principle irradiation. Radiochemical yields and purity of the products are discussed. The stacked target method, developed herein, can be used to produce other isotope pairs with appropriate beam tailoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Herman M, Capote R, Carlson BV, Oblozinsky P, Sin M, Trkov A, Wienke H, Zerkin V (2007) EMPIRE: nuclear reaction model code system for data evaluation. Nucl Data Sheets 108:2655–2715. https://doi.org/10.1016/j.nds.2007.11.003

    Article  CAS  Google Scholar 

  2. Goorley T, James M, Booth T, Brown F, Bull J, Cox LJ, Durkee J, Elson J, Fensin M, Forster RA, Hendricks J, Hughes HG, Johns R, Kiedrowski B, Martz R, Mashnik S, McKinney G, Pelowitz D, Prael R, Sweezy J, Waters L, Wilcox T, Zukaitis T (2012) Initial MCNP6 release overview. Nucl Technology 180(3):298–315. https://doi.org/10.13182/NT11-135

    Article  CAS  Google Scholar 

  3. Biersack J, Haggmark L (1980) A monte carlo computer program for the transport of energetic ions in amorphous targets. Nucl Inst Meth 174:257–269

    Article  CAS  Google Scholar 

  4. Couture A, Wittman R, Morrison EC, Bowen JM, Pierson B, Greenwood L, Woods V, Dorman E (2021) Comparison of model predictions with measured proton-induced production of nickel and iridium isotopes. J Radioanal Nucl Chem 330:603–607. https://doi.org/10.1007/s10967-021-07997-1

    Article  CAS  Google Scholar 

  5. NuDat 3, National nuclear data center, Brookhaven National Laboratory

  6. Griffith WP (1967) The chemistry of the rarer platinum metals (Os, Ru, Ir, and Rh). Interscience Publishers, New York, pp 42–126

    Google Scholar 

  7. Safety data sheet osmium tetroxide CAS 20816–12–0, Sigma Aldrich v. 6.0 revised 10/24/2019

  8. Stuchbery AE (1983) Electrodeposition of Pt and Os targets for nuclear reaction experiments. Nucl Inst Meth 211(2–3):293–295

    Article  CAS  Google Scholar 

  9. Boeglin W, Sick I, Seiler HP (1986) Electroplating of thick osmium targets. Nucl Inst Meth A 252(1):1–3

    Article  Google Scholar 

  10. Chakrabarty S, Tomar BS, Goswami A, Raman VA, Manohar SB (2001) Preparation of thin osmium targets by electrodeposition. Nucl Inst Meth B 174(1):212–214

    Article  CAS  Google Scholar 

  11. Jones T (2002) Electrodeposition of osmium. Metal Finish 100(6):84–90

    Article  CAS  Google Scholar 

  12. Shabalin IL (2014). Ultra-high temperature materials i: carbon (graphene/graphite) and refractory metals (Vol 1). Springer Science+Business media Dordrecht ISBN 978-94-007-7587-9. https://doi.org/10.1007/978-94-007-7587-9_1

  13. Dey S, Jain VK (2004) Platinum group metal chalcogenides. Platin Met Rev 48(1):16–29

    CAS  Google Scholar 

  14. Wöhler L, Ewald K, Krall HG (1933) Die sulfide, selenide und telluride der sechs platinmetalle. Berichte der Deutschen Chemischen Gesellschaft A and B Ser 66(11):1638–1652

    Article  Google Scholar 

  15. Gott MD, Hayes CR, Wycoff DE, Balkin ER, Smith BE, Pauzauskie PJ, Fassbender ME, Cutler CS, Ketring AR, Wilbur DS, Jurisson SS (2016) Accelerator-based production of the 99mTc-186Re diagnostic-therapeutic pair using metal disulfide targets (MoS2, WS2, OS2). Appl Radiat Isot 114:159–166. https://doi.org/10.1016/j.apradiso.2016.05.024

    Article  CAS  PubMed  Google Scholar 

  16. Chianelli RR, Pecoraro TA (1981) US Patent 4,288,422. Method of preparing chalcogenides of group VIII by low temperature precipitation from nonaqueous solution, the products produced by said method and their use as catalysts. Washington, DC: U.S. Patent and Trademark Office

  17. Finn EC, McNamara B, Greenwood L, Wittman R, Soderquist C, Woods V, VanDevender V, Metz L, Friese J (2015) Modeling and production of 240Am by deuteron-induced activation of a 240Pu target. Nucl Inst Meth B 349:39–44. https://doi.org/10.1016/j.nimb.2015.02.001

    Article  CAS  Google Scholar 

  18. Miller BW (2018) Radiation imagers for quantitative, single-particle digital autoradiography of alpha- and beta-particle emitters. Semin Nucl Med 48(4):367–376. https://doi.org/10.1053/j.semnuclmed.2018.02.008

    Article  PubMed  Google Scholar 

  19. Miller BW, Frost SHL, Frayo SL, Kenoyer AL, Santos E, Jones JC, Sandmaier BM (2015) Quantitative single-particle digital autoradiography with alpha-particle emitters for targeted radionuclide therapy using the iQID camera. Med Phys 42(7):4094–4105. https://doi.org/10.1118/1.4921997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Miller BW, Gregory SJ, Fuller ES, Barrett HH, Barber HB, Furenlid LR (2014) The iQID camera: an ionizing-radiation quantum imaging detector. Nucl Inst Meth A 767:146–152. https://doi.org/10.1016/j.nima.2014.05.070

    Article  CAS  Google Scholar 

  21. Mirion Technologies, Inc (2008) Genie 2000 Coincidence summing library Call#9239503B

  22. Pierson BD (2020) G4CSC. GitLab repository (Gov’t Use Only). https://gitlab.pnnl.gov/D3X381/g4csc.git

  23. Korkisch J (1969) Modern methods for the separation of rarer metal ions. Pergamon Press, New York, p 535

    Google Scholar 

  24. Korkisch J, Klakl H (1968) Anion-exchange behavior of the platinum metals and gold in hydrochloric acid-organic solvent media. Talanta 15(3):339–346

    Article  CAS  PubMed  Google Scholar 

  25. Anbar AD, Papanastassiou DA, Wasserburg GJ (1997) Determination of iridium in natural waters by clean chemical extraction and negative thermal ionization mass spectrometry. Anal Chem 69(13):2444–2450

    Article  CAS  PubMed  Google Scholar 

  26. Pearson DG, Woodland SJ (2000) Solvent extraction/anion exchange separation and determination of PGEs (Os, Ir, Pt, Pd, Ru) and Re–Os isotopes in geological samples by isotope dilution ICP-MS. Chem Geol 165(1):87–107

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Defense Threat Reduction Agency (DTRA). We thank PNNL staff Tom Brewer for assistance with helium leak checks, Ty Buckendorf and Ron DelMar for logistics support, Truc Trang-Le for gamma counting assistance, and Edgar Buck for energy dispersive spectrometry. This document is PNNL-SA-178600. The authors declare that there is no known financial or personal conflict of interest that could have influenced the preparation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erin C. Morrison.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3445 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morrison, E.C., Morrison, S.S., Bowen, J.M. et al. Stacked target irradiations and radiochemical separations for simultaneous production of short-lived Ni and Ir isotopes. J Radioanal Nucl Chem 332, 2533–2542 (2023). https://doi.org/10.1007/s10967-023-08917-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08917-1

Keywords

Navigation