Skip to main content
Log in

Unique porous framework constructed by uranyl phosphonate with high structural stability and preferential ion exchange capacity

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The stable porous material capable of exchanging external ions has promising potential in sorption and separation for radioactive nuclides. Herein, an in situ hydrothermal synthesis successfully incorporates potassium ions into a three-dimensional anionic uranyl phosphonate framework (UPF, 1), which endows the porous framework with a particular ion-exchange capacity towards alkali and alkali earth ions. Remarkably, framework 1 is tolerant to high temperature, acidity, and salinity, presenting high stability and thus allowing applications in multiple scenarios with harsh conditions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Yang W, Wu H, Wang R, Pan Q, Sun Z, Zhang H (2012) From 1D chain to 3D framework uranyl diphosphonates: syntheses, crystal structures, and selective ion exchange. Inorg Chem 51:11458–11465. https://doi.org/10.1021/ic301183h

    Article  CAS  PubMed  Google Scholar 

  2. Zhao H, Qi C, Yan X, Ji J, Chai Z, Wang S, Zheng T (2022) A multifunctional porous uranyl phosphonate framework for cyclic utilization: salvages, uranyl leaking prevention, and fluorescent sensing. ACS Appl Mater Interfaces 14:14380–14387. https://doi.org/10.1021/acsami.2c01671

    Article  CAS  PubMed  Google Scholar 

  3. Wen G, Chen X, Xu K, Xie X, Bao S, Zheng L (2021) Uranyl phosphonates: crystalline materials and nanosheets for temperature sensing. Dalton Trans 50:17129–17139. https://doi.org/10.1039/d1dt02977k

    Article  CAS  PubMed  Google Scholar 

  4. Ji J, Qi C, Zhao H, Yan X, Chai Z, Wang S, Zheng T (2022) Regulating the porosity of uranyl phosphonate frameworks with quaternary ammonium: structure, characterization, and fluorescent temperature sensors. Inorg Chem 61:16794–16804. https://doi.org/10.1021/acs.inorgchem.2c02636

    Article  CAS  PubMed  Google Scholar 

  5. Chen L, Chen L, Zhang Y, Xie J, Diwu J (2020) A layered uranyl coordination polymer with UV detection sensitivity, stability, and reusability. J Inorg Mater 35:1391–1397. https://doi.org/10.15541/jim20200139

    Article  Google Scholar 

  6. Knope KE, de Lill DT, Rowland CE, Cantos PM, de Bettencourt-Dias A, Cahill CL (2012) Uranyl sensitization of samarium(III) luminescence in a two-dimensional coordination polymer. Inorg Chem 51:201–206. https://doi.org/10.1021/ic201450e

    Article  CAS  PubMed  Google Scholar 

  7. Wang Y, Wang X, Zhang D, Zhou F, Gui D, Zheng T, Li J, Chai Z, Wang S (2018) A uranyl phosphonate framework with a temperature-induced order–disorder transition and temperature-correlated photoluminescence. Cryst Eng Comm 20:3153–3157. https://doi.org/10.1039/c8ce00450a

    Article  CAS  Google Scholar 

  8. Wang H, Zheng X, Long L, Kong X, Zheng L (2021) Sandwich-type uranyl phosphate–polyoxometalate cluster exhibiting strong luminescence. Inorg Chem 60:6790–6795. https://doi.org/10.1021/acs.inorgchem.1c00622

    Article  CAS  PubMed  Google Scholar 

  9. Yang W, Parker TG, Sun Z (2015) Structural chemistry of uranium phosphonates. Coord Chem Rev 303:86–109. https://doi.org/10.1016/j.ccr.2015.05.010

    Article  CAS  Google Scholar 

  10. Zhang J, Chen L, Dai X, Zhu L, Xiao C, Xu L, Zhang Z, Alekseev EV, Wang Y, Zhang C, Zhang H, Wang Y, Diwu J, Chai Z, Wang S (2019) Distinctive two-step intercalation of Sr2+ into a coordination polymer with record high 90Sr uptake capabilities. Chem 5:977–994. https://doi.org/10.1016/j.chempr.2019.02.011

    Article  CAS  Google Scholar 

  11. Zheng T, Yang Z, Gui D, Liu Z, Wang X, Dai X, Liu S, Zhang L, Gao Y, Chen L, Sheng D, Wang Y, Diwu J, Wang J, Zhou R, Chai Z, Albrecht-Schmitt TE, Wang S (2017) Overcoming the crystallization and designability issues in the ultrastable zirconium phosphonate framework system. Nat Commun 8:15369. https://doi.org/10.1038/ncomms15369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gui D, Zheng T, Chen L, Wang Y, Li Y, Sheng D, Diwu J, Chai Z, Albrecht-Schmitt TE, Wang S (2016) Hydrolytically stable nanoporous thorium mixed phosphite and pyrophosphate framework generated from redox-active ionothermal reactions. Inorg Chem 55:3721–3723. https://doi.org/10.1021/acs.inorgchem.6b00293

    Article  CAS  PubMed  Google Scholar 

  13. Wen G, Zou Q, Huang X, Zhang K, Bao S, Zheng L (2021) Heterometallic uranyl-organic frameworks incorporating manganese and copper: structures, ammonia sorption and magnetic properties. Polyhedron 205:115327. https://doi.org/10.1016/j.poly.2021.115327

    Article  CAS  Google Scholar 

  14. Andrews MB, Cahill CL (2013) Uranyl bearing hybrid materials: synthesis, speciation, and solid-state structures. Chem Rev 113:1121–1136. https://doi.org/10.1021/cr300202a

    Article  CAS  PubMed  Google Scholar 

  15. Lussier AJ, Lopez RAK, Burns PC (2017) A revised and expanded structure hierarchy of natural and synthetic hexavalent uranium compounds. Can Mineral 54:177–283. https://doi.org/10.3749/canmin.1500078

    Article  CAS  Google Scholar 

  16. Zheng T, Wu QY, Gao Y, Gui D, Qiu S, Chen L, Sheng D, Diwu J, Shi WQ, Chai Z, Albrecht-Schmitt TE, Wang S (2015) Probing the influence of phosphonate bonding modes to uranium(VI) on structural topology and stability: a complementary experimental and computational investigation. Inorg Chem 54:3864–3874. https://doi.org/10.1021/acs.inorgchem.5b00024

    Article  CAS  PubMed  Google Scholar 

  17. Liu Z, Han C, Tan W, Ji J, Zheng T (2023) Reticular chemistry of uranyl phosphonates: synthesis, design, and beyond. Mol Syst Des Eng 8:146–150. https://doi.org/10.1039/d2me00217e

    Article  CAS  Google Scholar 

  18. Zhang K, Wen G, Yang X, Lim D, Bao S, Donoshita M, Wu L, Kitagawa H, Zheng L (2021) Anhydrous superprotonic conductivity of a uranyl-based MOF from ambient temperature to 110 °C. ACS Materials Lett 3:744–751. https://doi.org/10.1021/acsmaterialslett.1c00176

    Article  CAS  Google Scholar 

  19. Wang Y, Wang X, Huang Y, Zhou F, Qi C, Zheng T, Li J, Chai Z, Wang S (2019) Reticular chemistry of uranyl phosphonates: sterically hindered phosphonate ligand method is significant for constructing zero-dimensional secondary building units. Chem Eur J 25:12567–12575. https://doi.org/10.1002/chem.201902310

    Article  CAS  PubMed  Google Scholar 

  20. Yang W, Yi F, Tian T, Tian W, Sun Z (2014) Structural variation within heterometallic uranyl hybrids based on flexible alkyldiphosphonate ligands. Cryst Growth Des 14:1366–1374. https://doi.org/10.1021/cg401850v

    Article  CAS  Google Scholar 

  21. Alsobrook AN, Hauser BG, Hupp JT, Alekseev EV, Depmeier W, Albrecht-Schmitt TE (2010) Cubic and rhombohedral heterobimetallic networks constructed from uranium, transition metals, and phosphonoacetate: new methods for constructing porous materials. Chem Commun 46:9167–9169. https://doi.org/10.1039/c0cc03507f

    Article  CAS  Google Scholar 

  22. Knope KE, Cahill CL (2010) Synthesis and characterization of 1-, 2-, and 3-dimensional bimetallic UO22+/Zn2+ phosphonoacetates. Eur J Inorg Chem. https://doi.org/10.1002/ejic.200901080

    Article  Google Scholar 

  23. Thuery P, Harrowfield J (2017) Recent advances in structural studies of heterometallic uranyl-containing coordination polymers and polynuclear closed species. Dalton Trans 46:13660–13667. https://doi.org/10.1039/c7dt03105j

    Article  CAS  PubMed  Google Scholar 

  24. Diwu J, Albrecht-Schmitt TE (2012) Chiral uranium phosphonates constructed from achiral units with three-dimensional frameworks. Chem Commun 48:3827–3829. https://doi.org/10.1039/c2cc30519d

    Article  CAS  Google Scholar 

  25. Zhang ZH, Senchyk GA, Liu Y, Spano-Franco T, Szymanowski JES, Burns PC (2017) Porous uranium diphosphonate frameworks with trinuclear units templated by organic ammonium hydrolyzed from amine solvents. Inorg Chem 56:13249–13256. https://doi.org/10.1021/acs.inorgchem.7b02019

    Article  CAS  PubMed  Google Scholar 

  26. Zheng T, Gao Y, Chen L, Liu Z, Diwu J, Chai Z, Albrecht-Schmitt TE, Wang S (2015) A new chiral uranyl phosphonate framework consisting of achiral building units generated from ionothermal reaction: structure and spectroscopy characterizations. Dalton Trans 44:18158–18166. https://doi.org/10.1039/c5dt02667a

    Article  CAS  PubMed  Google Scholar 

  27. Tian T, Yang W, Wang H, Dang S, Pan Q, Sun Z (2013) Syntheses and structures of uranyl ethylenediphosphonates: from layers to elliptical nanochannels. Inorg Chem 52:7100–7106. https://doi.org/10.1021/ic400658y

    Article  CAS  PubMed  Google Scholar 

  28. Tang SF, Hou X (2019) Structural tuning and sensitization of uranyl phosphonates by incorporation of countercations into the framework. Inorg Chem 58:1382–1390. https://doi.org/10.1021/acs.inorgchem.8b02904

    Article  CAS  PubMed  Google Scholar 

  29. Alsobrook AN, Albrecht-Schmitt TE (2009) Phosphonoacetate as a ligand for constructing layered and framework alkali metal uranyl compounds. Inorg Chem 48:11079–11084. https://doi.org/10.1021/ic9014493

    Article  CAS  PubMed  Google Scholar 

  30. Adelani PO, Oliver AG, Albrecht-Schmitt TE (2011) Layered and three-dimensional framework cesium and barium uranyl carboxyphenylphosphonates. Cryst Growth Des 11:3072–3080. https://doi.org/10.1021/cg200337w

    Article  CAS  Google Scholar 

  31. Adelani PO, Albrecht-Schmitt TE (2011) Metal-controlled assembly of uranyl diphosphonates toward the design of functional uranyl nanotubules. Inorg Chem 50:12184–12191. https://doi.org/10.1021/ic201945p

    Article  CAS  PubMed  Google Scholar 

  32. Adelani PO, Albrecht-Schmitt TE (2010) Differential ion exchange in elliptical uranyl diphosphonate nanotubules. Angew Chem Int Ed 49:8909–8911. https://doi.org/10.1002/anie.201004797

    Article  CAS  Google Scholar 

  33. Burns PC, Ewing RC, Hawthorne FC (1997) The crystal chemistry of hexavalent uranium; polyhedron geometries, bond-valence parameters, and polymerization of polyhedra. Can Mineral 35:1551–1570

    CAS  Google Scholar 

  34. Brese N, O’keeffe M (1991) Bond-valence parameters for solids. Acta Crystallogr Sect B 47:192–197. https://doi.org/10.1107/S0108768190011041

    Article  Google Scholar 

  35. Nguyen-Trung C, Begun GM, Palmer DA (2002) Aqueous uranium complexes. 2. Raman spectroscopic study of the complex formation of the dioxouranium(VI) ion with a variety of inorganic and organic ligands. Inorg Chem 31:5280–5287. https://doi.org/10.1021/ic00051a021

    Article  Google Scholar 

  36. Nelson AG, Rak Z, Albrecht-Schmitt TE, Becker U, Ewing RC (2014) Three new silver uranyl diphosphonates: structures and properties. Inorg Chem 53:2787–2796. https://doi.org/10.1021/ic401897n

    Article  CAS  PubMed  Google Scholar 

  37. Chen L, Zhang Y, Weng Z, Liu Z, Zhang J, Wang Y, Wang S (2021) Uranyl phosphonates with multiple uranyl coordination geometries and low temperature phase transition. Chin J Chem 39:597–604. https://doi.org/10.1002/cjoc.202000510

    Article  CAS  Google Scholar 

  38. Chen L, Diwu J, Gui D, Wang Y, Weng Z, Chai Z, Albrecht-Schmitt TE, Wang S (2017) Systematic investigation of the in situ reduction process from U(VI) to U(IV) in a phosphonate system under mild solvothermal conditions. Inorg Chem 56:6952–6964. https://doi.org/10.1021/acs.inorgchem.7b00480

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22006107, 22066014, U2167222, and 21976127) and Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Diwu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest regarding this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 249 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Chen, B., Weng, Z. et al. Unique porous framework constructed by uranyl phosphonate with high structural stability and preferential ion exchange capacity. J Radioanal Nucl Chem 332, 2135–2142 (2023). https://doi.org/10.1007/s10967-023-08905-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08905-5

Keywords

Navigation