Skip to main content
Log in

A case study for the uranyl recovery over magnetically retrievable Cu-BTC@Fe3O4 nanocomposites

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A magnetic Metal–Organic Framework (MOF) nanocomposite, namely Cu-BTC@Fe3O4 (BTC = 1,3,5-benzenetricarboxylate) was used for magnetically retrievable separation of uranyl (UO22+) in the presence of competitive ions. A significant adsorption amount of 312 mg/g was achieved for uranium over Cu-BTC@Fe3O4 at a pH value of 4.5. Extended X-ray Absorption Fine Structure (EXAFS) analysis indicated that the interaction of Cu-BTC@Fe3O4 with UO22+ is the synergistic coordination of carboxylate groups of BTC ligand, Fe3O4-COOH, and hydrate H2O for UO22+ ions. In addition to identifying a stable and retrievable adsorbent, the results generally elucidate UO22+ removal of MOFs composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ajiboye TO, Oyewo OA, Onwudiwe DC (2021) Simultaneous removal of organics and heavy metals from industrial wastewater: a review. Chemosphere 262:128379. https://doi.org/10.1016/j.chemosphere.2020.128379

    Article  CAS  PubMed  Google Scholar 

  2. Hasanpour M, Hatami M (2020) Application of three dimensional porous aerogels as adsorbent for removal of heavy metal ions from water/wastewater: a review study. Adv Colloid Interface Sci 284:102247. https://doi.org/10.1016/j.cis.2020.102247

    Article  CAS  PubMed  Google Scholar 

  3. Liu X, Ma R, Wang X, Ma Y, Yang Y, Zhuang L, Zhang S, Jehan R, Chen J, Wang X (2019) Graphene oxide-based materials for efficient removal of heavy metal ions from aqueous solution: a review. Environ Pollut 252:62–73. https://doi.org/10.1016/j.envpol.2019.05.050

    Article  CAS  PubMed  Google Scholar 

  4. Li X, Liu Y, Zhang C, Wen T, Zhuang L, Wang X, Song G, Chen D, Ai Y, Hayat T, Wang X (2018) Porous Fe2O3 microcubes derived from metal organic frameworks for efficient elimination of organic pollutants and heavy metal ions. Chem Eng J 336:241–252. https://doi.org/10.1016/j.cej.2017.11.188

    Article  CAS  Google Scholar 

  5. Burns PC, Ewing RC, Navrotsky A (2012) Nuclear fuel in a reactor accident. Science 335:1184–1188. https://doi.org/10.1126/science.1211285

    Article  CAS  PubMed  Google Scholar 

  6. Veliscek-Carolan J (2016) Separation of actinides from spent nuclear fuel: a review. J Hazard Mater 318:266–281. https://doi.org/10.1016/j.jhazmat.2016.07.027

    Article  CAS  PubMed  Google Scholar 

  7. Wang J, Zhuang S (2019) Extraction and adsorption of U(VI) from aqueous solution using affinity ligand-based technologies: an overview. Rev Environ 18:437–452. https://doi.org/10.1007/s11157-019-09507-y

    Article  CAS  Google Scholar 

  8. Burns PC (2005) U6+ minerals and inorganic compounds: Insights into an expanded structural hierarchy of crystal structures. Can Mineral 43:1839–1894. https://doi.org/10.2113/gscanmin.43.6.1839

    Article  CAS  Google Scholar 

  9. Yuan L-Y, Sun M, Mei L, Wang L, Zheng L-R, Gao Z-Q, Zhang J, Zhao Y-L, Chai Z-F, Shi W-Q (2015) New insight of coordination and extraction of uranium(VI) with N-donating ligands in room temperature ionic liquids: N, N ’-Diethyl-N, N ’-ditolyldipicolinamide as a case study. Inorg Chem 54:1992–1999. https://doi.org/10.1021/ic502890w

    Article  CAS  PubMed  Google Scholar 

  10. Mei D, Liu L, Yan B (2023) Adsorption of uranium (VI) by metal-organic frameworks and covalent-organic frameworks from water. Coord Chem Rev 475:214917. https://doi.org/10.1016/j.ccr.2022.214917

    Article  CAS  Google Scholar 

  11. Feng M-L, Sarma D, Qi X-H, Du K-Z, Huang X-Y, Kanatzidis MG (2016) Efficient removal and recovery of uranium by a layered organic-inorganic hybrid thiostannate. J Am Chem Soc 138:12578–12585. https://doi.org/10.1021/jacs.6b07351

    Article  CAS  PubMed  Google Scholar 

  12. Xiao C, Silver MA, Wang S (2017) Metal-organic frameworks for radionuclide sequestration from aqueous solution: a brief overview and outlook. Dalton Trans 46:16381–16386. https://doi.org/10.1039/c7dt03670a

    Article  CAS  PubMed  Google Scholar 

  13. Zeng D, Yuan L, Zhang P, Wang L, Li Z, Wang Y, Liu Y, Shi W (2021) Hydrolytically stable foamed HKUST-1@CMC composites realize high-efficient separation of U(VI). iScience 24:102982. https://doi.org/10.1016/j.isci.2021.102982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Prusty S, Somu P, Sahoo JK, Panda D, Sahoo SK, Sahoo SK, Lee YR, Jarin T, Sundar LS, Rao KS (2022) Adsorptive sequestration of noxious uranium (VI) from water resources: a comprehensive review. Chemosphere 308:136278. https://doi.org/10.1016/j.chemosphere.2022.136278

    Article  CAS  PubMed  Google Scholar 

  15. Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85:3533. https://doi.org/10.1021/ja00905a001

    Article  CAS  Google Scholar 

  16. Chen Z, Kirlikovali KO, Li P, Farha OK (2022) Reticular chemistry for highly porous metal-organic frameworks: the chemistry and applications. Acc Chem Res 55:579–591. https://doi.org/10.1021/acs.accounts.1c00707

    Article  CAS  PubMed  Google Scholar 

  17. Zhang Z, Zaworotko MJ (2014) Template-directed synthesis of metal-organic materials. Chem Soc Rev 43:5444–5455. https://doi.org/10.1039/c4cs00075g

    Article  CAS  PubMed  Google Scholar 

  18. Cai G, Yan P, Zhang L, Zhou H-C, Jiang H-L (2021) Metal-organic framework-based hierarchically porous materials: synthesis and applications. Chem Rev 121:12278–12326. https://doi.org/10.1021/acs.chemrev.1c00243

    Article  CAS  PubMed  Google Scholar 

  19. Chakraborty G, Park I-H, Medishetty R, Vittal JJ (2021) Two-dimensional metal-organic framework materials: synthesis, structures, properties and applications. Chem Rev 121:3751–3891. https://doi.org/10.1021/acs.chemrev.0c01049

    Article  CAS  PubMed  Google Scholar 

  20. Liu H, Fu T, Mao Y (2022) Metal organic framework-based materials for adsorption and detection of uranium(VI) from aqueous solution. ACS Omega 7:14430–14456. https://doi.org/10.1021/acsomega.2c00597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhao Z, Cheng G, Zhang Y, Han B, Wang X (2021) Metal-organic-framework based functional materials for uranium recovery: performance optimization and structure/functionality-activity relationships. ChemPlusChem 86:1177–1192. https://doi.org/10.1002/cplu.202100315

    Article  CAS  PubMed  Google Scholar 

  22. Yang W, Pan Q, Song S, Zhang H (2019) Metal-organic framework-based materials for the recovery of uranium from aqueous solutions. Inorg Chem Front 6:1924–1937. https://doi.org/10.1039/c9qi00386j

    Article  CAS  Google Scholar 

  23. Zheng T, Yang Z, Gui D, Liu Z, Wang X, Dai X, Liu S, Zhang L, Gao Y, Chen L, Sheng D, Wang Y, Juan D, Wang J, Zhou R, Chai Z, Albrecht-Schmitt TE, Wang S (2017) Overcoming the crystallization and designability issues in the ultrastable zirconium phosphonate framework system. Nat Commun 8:15369. https://doi.org/10.1038/ncomms15369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Panagiotou N, Liatsou I, Pournara A, Angeli GK, Giappa RM, Tylianakis E, Manos MJ, Froudakis GE, Trikalitis PN, Pashalidis I, Tasiopoulos AJ (2020) Water-stable 2-D Zr MOFs with exceptional UO22+ sorption capability. J Mater Chem A 8:1849–1857. https://doi.org/10.1039/c9ta10701k

    Article  CAS  Google Scholar 

  25. Zhang W, Dong X, Mu Y, Wang Y, Chen J (2021) Constructing adjacent phosphine oxide ligands confined in mesoporous Zr-MOFs for uranium capture from acidic medium. J Mater Chem A 9:16685–16691. https://doi.org/10.1039/d1ta03972e

    Article  CAS  Google Scholar 

  26. Min X, Yang W, Hui Y-F, Gao C-Y, Dang S, Sun Z-M (2017) Fe3O4@ ZIF-8: a magnetic nanocomposite for highly efficient UO22+ adsorption and selective UO22+/Ln(3+) separation. Chem Commun 53:4199–4202. https://doi.org/10.1039/c6cc10274c

    Article  CAS  Google Scholar 

  27. Xiao Y, Helal AS, Mazario E, Mayoral A, Chevillot-Biraud A, Decorse P, Losno R, Maurel F, Ammar S, Lomas JS, Hemadi M (2023) Functionalized maghemite nanoparticles for enhanced adsorption of uranium from simulated wastewater and magnetic harvesting. Environ Res 216:114569. https://doi.org/10.1016/j.envres.2022.114569

    Article  CAS  PubMed  Google Scholar 

  28. Feng Y, Jiang H, Li S, Wang J, Jing X, Wang Y, Chen M (2013) Metal–organic frameworks HKUST-1 for liquid-phase adsorption of uranium. Colloids Surf, A 431:87–92. https://doi.org/10.1016/j.colsurfa.2013.04.032

    Article  CAS  Google Scholar 

  29. Kim HK, Yun WS, Kim MB, Kim JY, Bae YS, Lee J, Jeong NC (2015) A chemical route to activation of open metal sites in the copper-based metal-organic framework materials HKUST-1 and Cu-MOF-2. J Am Chem Soc 137:10009–10015. https://doi.org/10.1021/jacs.5b06637

    Article  CAS  PubMed  Google Scholar 

  30. Zhang H, Dai Z, Sui Y, Xue J, Ding D (2018) Adsorption of U(VI) from aqueous solution by magnetic core-dual shell Fe3O4@PDA@TiO2. J Radioanal Nucl Chem 317:613–624. https://doi.org/10.1007/s10967-018-5923-0

    Article  CAS  Google Scholar 

  31. Wang L, Yang S, Chen L, Yuan S, Chen Q, He M-Y, Zhang Z-H (2017) Magnetically recyclable Cu-BTC@Fe3O4 composite-catalyzed C-(aryl)-S-P bond formation using aniline, P(O)H compounds and sulfur powder. Catal Sci Technol 7:2356–2361. https://doi.org/10.1039/c7cy00467b

    Article  CAS  Google Scholar 

  32. Chen Y, Huang X, Feng X, Li J, Huang Y, Zhao J, Guo Y, Dong X, Han R, Qi P, Han Y, Li H, Hu C, Wang B (2014) Facile fabrication of magnetically recyclable metal-organic framework nanocomposites for highly efficient and selective catalytic oxidation of benzylic C-H bonds. Chem Commun 50:8374–8377. https://doi.org/10.1039/c4cc03728f

    Article  CAS  Google Scholar 

  33. Chen Y, Huang X, Zhang S, Li S, Cao S, Pei X, Zhou J, Feng X, Wang B (2016) Shaping of Metal-organic frameworks: from fluid to shaped bodies and robust foams. J Am Chem Soc 138:10810–10813. https://doi.org/10.1021/jacs.6b06959

    Article  CAS  PubMed  Google Scholar 

  34. Yang S, Zhang Z-H, Chen Q, He M-Y, Wang L (2018) Magnetically recyclable metal-organic framework@Fe3O4 composite-catalyzed facile reduction of nitroarene compounds in aqueous medium. Appl Organomet Chem 32:e4132. https://doi.org/10.1002/aoc.4132

    Article  CAS  Google Scholar 

  35. Borkowski L, Cahill C (2004) A novel uranium-containing coordination polymer: Poly[[aqua(benzene-1,3,5- tricarboxylato)dioxouranium(VI)] monohydrate]. Acta Crystallogr E 60:198–200. https://doi.org/10.1107/S1600536804000765

    Article  CAS  Google Scholar 

  36. Zhang Z-H, Lan J-H, Yuan L-Y, Sheng P-P, He M-Y, Zheng L-R, Chen Q, Chai Z-F, Gibson JK, Shi W-Q (2020) Rational construction of porous metal-organic frameworks for uranium(VI) extraction: the strong periodic tendency with a metal node. ACS Appl Mater Interfaces 12:14087–14094. https://doi.org/10.1021/acsami.0c02121

    Article  CAS  PubMed  Google Scholar 

  37. Yang WT, Bai ZQ, Shi WQ, Yuan LY, Tian T, Chai ZF, Wang H, Sun ZM (2013) MOF-76: from a luminescent probe to highly efficient U-VI sorption material. Chem Commun 49:10415–10417. https://doi.org/10.1039/c3cc44983a

    Article  CAS  Google Scholar 

  38. Abney CW, Mayes RT, Saito T, Dai S (2017) Materials for the recovery of uranium from seawater. Chem Rev 117:13935–14013. https://doi.org/10.1021/acs.chemrev.7b00355

    Article  CAS  PubMed  Google Scholar 

  39. Bai Z-Q, Yuan L-Y, Zhu L, Liu Z-R, Chu S-Q, Zheng L-R, Zhang J, Chai Z-F, Shi W-Q (2015) Introduction of amino groups into acid-resistant MOFs for enhanced U(VI) sorption. J Mater Chem A 3:525–534. https://doi.org/10.1039/c4ta04878d

    Article  CAS  Google Scholar 

  40. Luo B-C, Yuan L-Y, Chai Z-F, Shi W-Q, Tang Q (2016) U(VI) capture from aqueous solution by highly porous and stable MOFs: UiO-66 and its amine derivative. J Radioanal Nucl Chem 307:269–276. https://doi.org/10.1007/s10967-015-4108-3

    Article  CAS  Google Scholar 

  41. Yang P, Liu Q, Liu J, Zhang H, Li Z, Li R, Liu L, Wang J (2017) Interfacial growth of a metal-organic framework (UiO-66) on functionalized graphene oxide (GO) as a suitable seawater adsorbent for extraction of uranium(VI). J Mater Chem A 5:17933–17942. https://doi.org/10.1039/c6ta10022h

    Article  CAS  Google Scholar 

  42. Liu W, Dai X, Xie J, Silver MA, Zhang D, Wang Y, Cai Y, Juan D, Wang J, Zhou R, Chai Z, Wang S (2018) Highly sensitive detection of UV radiation using a uranium coordination polymer. ACS Appl Mater Interfaces 10:4844–4850. https://doi.org/10.1021/acsami.7b17954

    Article  CAS  PubMed  Google Scholar 

  43. Zhang S, Yuan D, Zhao J, Ren G, Zhao X, Liu Y, Wang Y, He Y, Ma M, Zhang Q (2021) Highly efficient extraction of uranium from strong HNO3 media achieved on phosphine oxide functionalized superparamagnetic composite polymer microspheres. J Mater Chem A 9:18393–18405. https://doi.org/10.1039/d1ta04946a

    Article  CAS  Google Scholar 

  44. Zhang S, Yuan D, Zhang Q, Wang Y, Liu Y, Zhao J, Chen B (2020) Highly efficient removal of uranium from highly acidic media achieved using a phosphine oxide and amino functionalized superparamagnetic composite polymer adsorbent. J Mater Chem A 8:10925–10934. https://doi.org/10.1039/d0ta01633k

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by National Natural Science Foundation of China (12175024 and 11775037), the Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology (BM2012110) and the Qinglan Project of Jiangsu Province. We also acknowledge the crew of the 1W1B beamline of Beijing Synchrotron Radiation Facility for their constructive assistance in the course of EXAFS measurements and data analyses.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: LYY, ZHZ; Methodology: ZHS, PPS, ZHZ; Formal analysis and investigation: ZHS, PPS, ZJL; Data curation: LYW, WLB; Writing—original draft preparation: ZHS, PPS; Writing—review and editing: ZHZ, LYY; Funding acquisition: ZHZ; Supervision: WQS.

Corresponding authors

Correspondence to Li-Yong Yuan or Zhi-Hui Zhang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 123 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, ZH., Sheng, PP., Li, ZJ. et al. A case study for the uranyl recovery over magnetically retrievable Cu-BTC@Fe3O4 nanocomposites. J Radioanal Nucl Chem 332, 1667–1675 (2023). https://doi.org/10.1007/s10967-023-08878-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08878-5

Keywords

Navigation