Skip to main content
Log in

Adsorption of uranium ions from aqueous solutions by graphene-based zinc oxide nanocomposites

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this paper, adsorption potentials of U(VI) ions were investigated using graphene-based zinc oxide nanocomposites which are graphene oxide–zinc oxide (GO–ZnO) and reduced graphene oxide–zinc oxide (rGO–ZnO). Kinetic data showed that processes could be simulated with pseudo-second-order with high correlation coefficient (R2 > 0.99). Experimental results of equilibrium adsorption results show that Langmuir fits the data better. The maximum sorption capacities of GO–ZnO at pH 5.0 was 476.19 mg/g, and rGO–ZnO at pH 5.5 was 256.41 mg/g at 298 K. Thermodynamic parameters indicate that the adsorption of U(VI) on GO–ZnO and rGO–ZnO are spontaneous and endothermic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Riley RG (1992) Chemical contaminants on DOE lands and selection of contaminant mixtures for subsurface science research. US Department of Energy, Office of Energy Research, Subsurface science program

  2. Kerisit S, Liu C (2014) Molecular dynamics simulations of uranyl and uranyl carbonate adsorption at aluminosilicate surfaces. Environ Sci Technol 48:3899–3907

    Article  CAS  PubMed  Google Scholar 

  3. He YR, Li SC, Li XL et al (2018) Graphene (rGO) hydrogel: A promising material for facile removal of uranium from aqueous solution. Chem Eng J 338:333–340. https://doi.org/10.1016/j.cej.2018.01.037

    Article  CAS  Google Scholar 

  4. Daulta R, Singh B, Kataria N, Garg VK (2018) Assessment of uranium concentration in the drinking water and associated health risks in Eastern Haryana, India. Hum Ecol risk Assess an Int J 24:1115–1126

    Article  CAS  Google Scholar 

  5. Verma S, Kim K-H (2022) Graphene-based materials for the adsorptive removal of uranium in aqueous solutions. Environ Int 158:106944

    Article  CAS  PubMed  Google Scholar 

  6. Yang S, Zong P, Hu J et al (2013) Fabrication of β-cyclodextrin conjugated magnetic HNT/iron oxide composite for high-efficient decontamination of U(VI). Chem Eng J 214:376–385. https://doi.org/10.1016/j.cej.2012.10.030

    Article  CAS  Google Scholar 

  7. Yang W, Zaoui A (2013) Behind adhesion of uranyl onto montmorillonite surface: a molecular dynamics study. J Hazard Mater 261:224–234. https://doi.org/10.1016/j.jhazmat.2013.07.021

    Article  CAS  PubMed  Google Scholar 

  8. Hongxia Z, Zheng D, Zuyi T (2006) Sorption of thorium(IV) ions on gibbsite: Effects of contact time, pH, ionic strength, concentration, phosphate and fulvic acid. Colloids Surf A Physicochem Eng Asp 278:46–52. https://doi.org/10.1016/j.colsurfa.2005.11.078

    Article  CAS  Google Scholar 

  9. Tan X, Wang X, Fang M, Chen C (2007) Sorption and desorption of Th(IV) on nanoparticles of anatase studied by batch and spectroscopy methods. Colloids Surf A Physicochem Eng Asp 296:109–116. https://doi.org/10.1016/j.colsurfa.2006.09.032

    Article  CAS  Google Scholar 

  10. Yang ST, Chen S, Chang Y et al (2011) Removal of methylene blue from aqueous solution by graphene oxide. J Colloid Interface Sci 359:24–29. https://doi.org/10.1016/j.jcis.2011.02.064

    Article  CAS  PubMed  Google Scholar 

  11. Sitko R, Turek E, Zawisza B et al (2013) Adsorption of divalent metal ions from aqueous solutions using graphene oxide. Dalt Trans 42:5682–5689. https://doi.org/10.1039/c3dt33097d

    Article  CAS  Google Scholar 

  12. Zhao C, Hong P, Li Y et al (2019) Mechanism of adsorption of tetracycline–Cu multi-pollutants by graphene oxide (GO) and reduced graphene oxide (rGO). J Chem Technol Biotechnol 94:1176–1186

    Article  CAS  Google Scholar 

  13. Pan N, Guan D, He T et al (2013) Removal of Th4+ ions from aqueous solutions by graphene oxide. J Radioanal Nucl Chem 298:1999–2008. https://doi.org/10.1007/s10967-013-2660-2

    Article  CAS  Google Scholar 

  14. Wang X, Chen Z, Wang X (2015) Graphene oxides for simultaneous highly efficient removal of trace level radionuclides from aqueous solutions. Sci China Chem 58:1766–1773. https://doi.org/10.1007/s11426-015-5435-5

    Article  CAS  Google Scholar 

  15. Li Z, Chen F, Yuan L et al (2012) Uranium(VI) adsorption on graphene oxide nanosheets from aqueous solutions. Chem Eng J 210:539–546. https://doi.org/10.1016/j.cej.2012.09.030

    Article  CAS  Google Scholar 

  16. Singh S, Khasnabis S, Anil AG et al (2022) Multifunctional nanohybrid for simultaneous detection and removal of Arsenic(III) from aqueous solutions. Chemosphere 289:133101

    Article  CAS  PubMed  Google Scholar 

  17. Madadrang CJ, Kim HY, Gao G et al (2012) Adsorption behavior of EDTA-graphene oxide for Pb (II) removal. ACS Appl Mater Interfaces 4:1186–1193. https://doi.org/10.1021/am201645g

    Article  CAS  PubMed  Google Scholar 

  18. Zong P, Wang S, Zhao Y et al (2013) Synthesis and application of magnetic graphene/iron oxides composite for the removal of U(VI) from aqueous solutions. Chem Eng J 220:45–52. https://doi.org/10.1016/j.cej.2013.01.038

    Article  CAS  Google Scholar 

  19. Manikandan B, Endo T, Kaneko S et al (2018) Properties of sol gel synthesized ZnO nanoparticles. J Mater Sci Mater Electron 29:9474–9485

    Article  CAS  Google Scholar 

  20. Ba-Abbad MM, Kadhum AAH, Mohamad AB et al (2013) The effect of process parameters on the size of ZnO nanoparticles synthesized via the sol-gel technique. J Alloys Compd 550:63–70. https://doi.org/10.1016/j.jallcom.2012.09.076

    Article  CAS  Google Scholar 

  21. Wang X, Cai W, Liu S et al (2013) ZnO hollow microspheres with exposed porous nanosheets surface: Structurally enhanced adsorption towards heavy metal ions. Colloids Surf A Physicochem Eng Asp 422:199–205

    Article  CAS  Google Scholar 

  22. Tatykayev B, Donat F, Alem H et al (2017) Synthesis of core/shell ZnO/RGO nanoparticles by calcination of ZIF-8/RGO composites and their photocatalytic activity. ACS Omega 2:4946–4954. https://doi.org/10.1021/acsomega.7b00673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kaynar ÜH, Ayvacıklı M, Kaynar SÇ, Hiçsönmez Ü (2014) Removal of uranium(VI) from aqueous solutions using nanoporous ZnO prepared with microwave-assisted combustion synthesis. J Radioanal Nucl Chem 299:1469–1477. https://doi.org/10.1007/s10967-014-2919-2

    Article  CAS  Google Scholar 

  24. Hadadian M, Goharshadi EK, Fard MM, Ahmadzadeh H (2018) Synergistic effect of graphene nanosheets and zinc oxide nanoparticles for effective adsorption of Ni (II) ions from aqueous solutions. Appl Phys A Mater Sci Process 124:1–10. https://doi.org/10.1007/s00339-018-1664-8

    Article  CAS  Google Scholar 

  25. Marcano DC, Kosynkin DV, Berlin JM et al (2010) Improved Synthesis of Graphene Oxide. ACS Nano 4:4806–4814. https://doi.org/10.1021/nn1006368

    Article  CAS  PubMed  Google Scholar 

  26. Rodríguez C, Tapia C, Leiva-Aravena E, Leiva E (2020) Graphene oxide–zno nanocomposites for removal of aluminum and copper ions from acid mine drainage wastewater. Int J Environ Res Public Health 17:1–18. https://doi.org/10.3390/ijerph17186911

    Article  CAS  Google Scholar 

  27. Chen Y-L, Hu Z-A, Chang Y-Q et al (2011) Zinc oxide/reduced graphene oxide composites and electrochemical capacitance enhanced by homogeneous incorporation of reduced graphene oxide sheets in zinc oxide matrix. J Phys Chem C 115:2563–2571

    Article  CAS  Google Scholar 

  28. Liu J, Li S, Zhang B et al (2017) Ultrasensitive and low detection limit of nitrogen dioxide gas sensor based on flower-like ZnO hierarchical nanostructure modified by reduced graphene oxide. Sensors Actuators B Chem 249:715–724. https://doi.org/10.1016/j.snb.2017.04.190

    Article  CAS  Google Scholar 

  29. Wang HW, Hu ZA, Chang YQ et al (2011) Preparation of reduced graphene oxide/cobalt oxide composites and their enhanced capacitive behaviors by homogeneous incorporation of reduced graphene oxide sheets in cobalt oxide matrix. Mater Chem Phys 130:672–679. https://doi.org/10.1016/j.matchemphys.2011.07.043

    Article  CAS  Google Scholar 

  30. Naseem T, Zain-ul-Abdin WM et al (2020) Reduced graphene oxide/zinc oxide nanocomposite: from synthesis to its application for wastewater purification and antibacterial activity. J Inorg Organomet Polym Mater 30:3907–3919. https://doi.org/10.1007/s10904-020-01529-2

    Article  CAS  Google Scholar 

  31. Durmus Z, Kurt Zengin B, Durmus A (2019) Synthesis and characterization of graphene oxide/zinc oxide (GO/ZnO) nanocomposite and its utilization for photocatalytic degradation of basic fuchsin dye. ChemistrySelect 4:271–278

    Article  CAS  Google Scholar 

  32. Azarang M, Shuhaimi A, Yousefi R, Jahromi SP (2015) One-pot sol-gel synthesis of reduced graphene oxide uniformly decorated zinc oxide nanoparticles in starch environment for highly efficient photodegradation of Methylene Blue. RSC Adv 5:21888–21896. https://doi.org/10.1039/c4ra16767h

    Article  CAS  Google Scholar 

  33. Tariq M, Khan AU, Rehman AU et al (2021) Green synthesis of Zno@ GO nanocomposite and its’ efficient antibacterial activity. Photodiagnosis Photodyn Ther 35:102471

    Article  CAS  PubMed  Google Scholar 

  34. Baizaee SM, Arabi M, Bahador AR (2018) A simple, one-pot, low temperature and pressure route for the synthesis of RGO/ZnO nanocomposite and investigating its photocatalytic activity. Mater Sci Semicond Process 82:135–142

    Article  CAS  Google Scholar 

  35. Yuan R, Yuan J, Wu Y et al (2017) Efficient synthesis of graphene oxide and the mechanisms of oxidation and exfoliation. Appl Surf Sci 416:868–877. https://doi.org/10.1016/j.apsusc.2017.04.181

    Article  CAS  Google Scholar 

  36. Kaptanoğlu İG, Yuşan S (2022) Adsorption performance of Pb(II) ions on green synthesized GO and rGO: isotherm and thermodynamic studies. Environ Res Technol 5:257–271

    Article  Google Scholar 

  37. Abdelouhab ZA, Djouadi D, Chelouche A, Touam T (2020) Structural, morphological and Raman scattering studies of pure and Ce-doped ZnO nanostructures elaborated by hydrothermal route using nonorganic precursor. J Sol-Gel Sci Technol 95:136–145

    Article  Google Scholar 

  38. Harnchana V, Chaiyachad S, Pimanpang S et al (2019) Hierarchical Fe3O4-reduced graphene oxide nanocomposite grown on NaCl crystals for triiodide reduction in dye-sensitized solar cells. Sci Rep 9:1–13. https://doi.org/10.1038/s41598-018-38050-z

    Article  CAS  Google Scholar 

  39. Rajakumaran R, Boddu V, Kumar M et al (2019) Effect of ZnO morphology on GO-ZnO modified polyamide reverse osmosis membranes for desalination. Desalination 467:245–256

    Article  CAS  Google Scholar 

  40. Dai Z, Sun Y, Zhang H et al (2019) Rational Synthesis of Polyamidoxime/Polydopamine-Decorated Graphene Oxide Composites for Efficient Uranium(VI) Removal from Mine Radioactive Wastewater. Ind Eng Chem Res 58:19280–19291. https://doi.org/10.1021/acs.iecr.9b03934

    Article  CAS  Google Scholar 

  41. Liu H, Mao Y (2021) Graphene oxide-based nanomaterials for uranium adsorptive uptake. ES Mater Manuf 13:3–22

    CAS  Google Scholar 

  42. Liu X, Sun J, Xu X et al (2019) Adsorption and desorption of U(VI) on different-size graphene oxide. Chem Eng J 360:941–950. https://doi.org/10.1016/j.cej.2018.04.050

    Article  CAS  Google Scholar 

  43. Yue Y, Cao Z, Yang F et al (2019) Preparation of an anti-aggregation Silica/Zinc/graphene oxide nanocomposite with enhanced adsorption capacity. Chemistry 25:16340–16349. https://doi.org/10.1002/chem.201903875

    Article  CAS  PubMed  Google Scholar 

  44. Radhakrishnan A, Nahi J, Beena B (2021) Synthesis and characterization of multi-carboxyl functionalized nanocellulose/graphene oxide-zinc oxide composite for the adsorption of uranium (VI) from aqueous solutions: kinetic and equilibrium profiles. Mater Today Proc 41:557–563. https://doi.org/10.1016/j.matpr.2020.05.249

    Article  CAS  Google Scholar 

  45. Alswata AA, Bin AM, Al-Hada NM et al (2017) Preparation of zeolite/zinc oxide nanocomposites for toxic metals removal from water. Results Phys 7:723–731

    Article  Google Scholar 

  46. Huang ZH, Zheng X, Lv W et al (2011) Adsorption of lead(II) ions from aqueous solution on low-temperature exfoliated graphene nanosheets. Langmuir 27:7558–7562. https://doi.org/10.1021/la200606r

    Article  CAS  PubMed  Google Scholar 

  47. Donat R, Akdogan A, Erdem E, Cetisli H (2005) Thermodynamics of Pb2+ and Ni2+ adsorption onto natural bentonite from aqueous solutions. J Colloid Interface Sci 286:43–52

    Article  CAS  PubMed  Google Scholar 

  48. Gok C, Aytas S (2009) Biosorption of uranium(VI) from aqueous solution using calcium alginate beads. J Hazard Mater 168:369–375. https://doi.org/10.1016/j.jhazmat.2009.02.063

    Article  CAS  PubMed  Google Scholar 

  49. Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10. https://doi.org/10.1016/j.cej.2009.09.013

    Article  CAS  Google Scholar 

  50. Zhao X, Hu B, Ye J, Jia Q (2013) Preparation, characterization, and application of graphene-zinc oxide composites (G–ZnO) for the adsorption of Cu(II), Pb(II), and Cr(III). J Chem Eng Data 58:2395–2401. https://doi.org/10.1021/je400384z

    Article  CAS  Google Scholar 

  51. Yusan SD, Akyil S (2008) Sorption of uranium (VI) from aqueous solutions by akaganeite. J Hazard Mater 160:388–395

    Article  CAS  PubMed  Google Scholar 

  52. Salameh SIY, Khalili FI, Al-Dujaili AH (2017) Removal of U(VI) and Th(IV) from aqueous solutions by organically modified diatomaceous earth: Evaluation of equilibrium, kinetic and thermodynamic data. Int J Miner Process 168:9–18. https://doi.org/10.1016/j.minpro.2017.08.007

    Article  CAS  Google Scholar 

  53. Saeed MM (2003) Adsorption profile and thermodynamic parameters of the preconcentration of Eu (III) on 2-thenoyltrifluoroacetone loaded polyurethane (PUR) foam. J Radioanal Nucl Chem 256:73–80

    Article  CAS  Google Scholar 

  54. Zhao D, Wang Y, Zhao S et al (2019) A simple method for preparing ultra-light graphene aerogel for rapid removal of U(VI) from aqueous solution. Environ Pollut 251:547–554. https://doi.org/10.1016/j.envpol.2019.05.011

    Article  CAS  PubMed  Google Scholar 

  55. Sheela T, Nayaka YA, Viswanatha R et al (2012) Kinetics and thermodynamics studies on the adsorption of Zn(II), Cd(II) and Hg(II) from aqueous solution using zinc oxide nanoparticles. Powder Technol 217:163–170. https://doi.org/10.1016/j.powtec.2011.10.023

    Article  CAS  Google Scholar 

  56. Zhao G, Wen T, Yang X et al (2012) Preconcentration of U (VI) ions on few-layered graphene oxide nanosheets from aqueous solutions. Dalt Trans 41:6182–6188

    Article  CAS  Google Scholar 

  57. Tan L, Wang J, Liu Q et al (2015) The synthesis of a manganese dioxide–iron oxide–graphene magnetic nanocomposite for enhanced uranium (VI) removal. New J Chem 39:868–876

    Article  CAS  Google Scholar 

  58. Zhang Q, Zhao D, Ding Y et al (2019) Synthesis of Fe–Ni/graphene oxide composite and its highly efficient removal of uranium (VI) from aqueous solution. J Clean Prod 230:1305–1315

    Article  CAS  Google Scholar 

  59. Chen S, Hong J, Yang H, Yang J (2013) Adsorption of uranium (VI) from aqueous solution using a novel graphene oxide-activated carbon felt composite. J Environ Radioact 126:253–258. https://doi.org/10.1016/j.jenvrad.2013.09.002

    Article  CAS  PubMed  Google Scholar 

  60. Camtakan Z, Erenturk S, Yusan S (2012) Magnesium oxide nanoparticles: preparation, characterization, and uranium sorption properties. Environ Prog Sustain Energy 31:536–543

    Article  CAS  Google Scholar 

  61. Li F, Yang Z, Weng H et al (2018) High efficient separation of U (VI) and Th (IV) from rare earth elements in strong acidic solution by selective sorption on phenanthroline diamide functionalized graphene oxide. Chem Eng J 332:340–350

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Ege University Scientific Research Projects (Grant Nr: 23492). The authors express their sincere gratitude to Prof. Dr. Şule Aytaş for her suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikbal Gozde Kaptanoglu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaptanoglu, I., Yusan, S. Adsorption of uranium ions from aqueous solutions by graphene-based zinc oxide nanocomposites. J Radioanal Nucl Chem 332, 4705–4719 (2023). https://doi.org/10.1007/s10967-023-08876-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08876-7

Keywords

Navigation