Skip to main content
Log in

A novel SPECT/MRI bimodal imaging probe: 99mTc-DPAPA-Fe3O4 nanoconjugate

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This study aimed to create a novel bimodal probe. For this purpose, cubic iron oxide nanoparticles (C-Fe3O4 NPs) conjugated with an EDTMP derivative called DPAPA thought to be a targeting tool for prostate cancer and bone metastases were studied. NPs were synthesized and conjugated with DPAPA, and then characterization studies were carried out. The particles were demonstrated to be cubic shaped, with an average size of 68.55 ± 1 0.03 (n = 3) nm. Then the nanoconjugates were radiolabeled with 99mTc. In vitro cellular affinities were conducted using PC-3, RWPE-1, LNCaP, K562, and Saos-2 cell lines. In conclusion, radio-nanoconjugates have the potential for bimodal MRI/SPECT imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

C-Fe3O4 :

Cubic iron oxide

C-Fe3O4-SiO2 :

Cubic iron oxide coated with TEOS

C-Fe3O4-SiO2-HPG:

C-Fe3O4-SiO2 modified with hyperbranched polyglycerol (HPG)

C-Fe3O4-SiO2-HPG-NH2 :

Coupled ethylene diamine with C-Fe3O4-SiO2-HPG

C-Fe3O4-SiO2-HPG-NH2-DPAPA:

DPAPA conjugated with C-Fe3O4-SiO2-HPG-NH2 (NC)

99mTc-DPAPA-Fe3O4 :

Radiolabelled-nanocaonjugate (99mTc-C-Fe3O4-SiO2-HPG-NH2-DPAPA)

DPAPA:

(S)-2,5-Bis(bis(phosphonomethyl)amino) pentanoic acid

NPs:

Nanoparticles

NC:

Nanoconjugate

References

  1. Rawla P (2019) Epidemiology of prostate cancer. World J Oncol 10:63–89. https://doi.org/10.14740/wjon1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hensel J, Thalmann GN (2016) Biology of bone metastases in prostate cancer. Urology 92:6–13. https://doi.org/10.1016/j.urology.2015.12.039

    Article  PubMed  Google Scholar 

  3. Lübbe AS, Alexiou C, Bergemann C (2001) Clinical applications of magnetic drug targeting. J Surg Res 95:200–206. https://doi.org/10.1006/jsre.2000.6030

    Article  CAS  PubMed  Google Scholar 

  4. Sadri N, Moghadam M, Abbasi A (2018) MoO2(acac)2@Fe3O4/SiO2/HPG/COSH nanostructures: novel synthesis, characterization and catalyst activity for oxidation of olefins and sulfides. J Mater Sci Mater Electron 29:11991–12000. https://doi.org/10.1007/s10854-018-9301-z

    Article  CAS  Google Scholar 

  5. Yurt Kilcar A, Biber Muftuler FZ, Enginar H et al (2014) Synthesis, characterization and biodistribution of 99mTc-Bioquin-HMPAO (99mTc-BH) as a novel brain imaging agent. J Radioanal Nucl Chem 302:563–573. https://doi.org/10.1007/s10967-014-3175-1

    Article  CAS  Google Scholar 

  6. Shubayev VI, Pisanic TR, Jin S (2009) Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev 61:467–477. https://doi.org/10.1016/j.addr.2009.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Abdeen S (2013) Diagnostics and treatment of metastatic cancers with magnetic nanoparticles. J Nanomed Biother Discov. https://doi.org/10.4172/2155-983X.1000115

  8. Hu X, Zhou L, Gao C (2011) Hyperbranched polymers meet colloid nanocrystals: a promising avenue to multifunctional, robust nanohybrids. Colloid Polym Sci 289:1299–1320. https://doi.org/10.1007/s00396-011-2457-1

    Article  CAS  Google Scholar 

  9. Jahandar M, Zarrabi A, Shokrgozar MA, Mousavi H (2015) Synthesis, characterization and application of polyglycerol coated Fe3O4 nanoparticles as a nano-theranostics agent. Mater Res Express 2:125002. https://doi.org/10.1088/2053-1591/2/12/125002

    Article  CAS  Google Scholar 

  10. Fidler M (1981) Incidence of fracture through metastases in long bones. Acta Orthop Scand 52:623–627. https://doi.org/10.3109/17453678108992157

    Article  CAS  PubMed  Google Scholar 

  11. Robins HI, D’Oleire F, Grosen E, Spriggs D. Rationale and clinical status of 418 degrees C systemic hyperthermia tumor necrosis factor, and melphalan for neoplastic disease. Anticancer Res 17:2891–2894

  12. Martinez-Boubeta C, Simeonidis K, Makridis A et al (2013) Learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications. Sci Rep 3:1652. https://doi.org/10.1038/srep01652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ünak P, Yasakçı V, Tutun E et al (2023) Multimodal radiobioconjugates of magnetic nanoparticles labeled with 44sc and 47sc for theranostic application. Pharmaceutics 15:850. https://doi.org/10.3390/pharmaceutics15030850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Babu P, Sinha S, Surolia A (2007) Sugar−quantum dot conjugates for a selective and sensitive detection of lectins. Bioconjug Chem 18:146–151. https://doi.org/10.1021/bc060204q

    Article  CAS  PubMed  Google Scholar 

  15. Yasakci V, Tekin V, Guldu OK et al (2018) Hyaluronic acid-modified [19F]FDG-conjugated magnetite nanoparticles: in vitro bioaffinities and HPLC analyses in organs. J Radioanal Nucl Chem 318:1973–1989. https://doi.org/10.1007/s10967-018-6282-6

    Article  CAS  Google Scholar 

  16. Bahrami-Samani A, Ghannadi-Maragheh M, Jalilian AR et al (2009) Production, quality control and biological evaluation of 153sm-EDTMP in wild-type rodents. Iran J Nucl Med 17:12–19

    CAS  Google Scholar 

  17. Heister E, Neves V, Tîlmaciu C et al (2009) Triple functionalisation of single-walled carbon nanotubes with doxorubicin, a monoclonal antibody, and a fluorescent marker for targeted cancer therapy. Carbon N Y 47:2152–2160. https://doi.org/10.1016/j.carbon.2009.03.057

    Article  CAS  Google Scholar 

  18. Tutun E, Tekin V, Yasakcı V et al (2021) Synthesis and morphological studies of Tc-99m-labeled lupulone-conjugated Fe3O4 @TiO 2 nanocomposite, and in vitro cytotoxicity activity on prostate cancer cell lines. Appl Organomet Chem. https://doi.org/10.1002/aoc.6435

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rouhrazi H, Turgan N, Oktem G (2018) Zoledronic acid overcomes chemoresistance by sensitizing cancer stem cells to apoptosis. Biotech Histochem 93:77–88. https://doi.org/10.1080/10520295.2017.1387286

    Article  CAS  PubMed  Google Scholar 

  20. Islami M, Zarrabi A, Tada S et al (2018) Controlled quercetin release from high-capacity-loading hyperbranched polyglycerol-functionalized graphene oxide. Int J Nanomed 13:6059–6071. https://doi.org/10.2147/IJN.S178374

    Article  CAS  Google Scholar 

  21. Shapiro EM, Skrtic S, Koretsky AP (2005) Sizing it up: cellular MRI using micron-sized iron oxide particles. Magn Reson Med 53:329–338. https://doi.org/10.1002/mrm.20342

    Article  PubMed  Google Scholar 

  22. Tang F, Li L, Chen D (2012) Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater 24:1504–1534. https://doi.org/10.1002/adma.201104763

    Article  CAS  PubMed  Google Scholar 

  23. Wang S-Y, Chen X-X, Li Y, Zhang Y-Y (2016) Application of multimodality imaging fusion technology in diagnosis and treatment of malignant tumors under the precision medicine plan. Chin Med J (Engl) 129:2991–2997. https://doi.org/10.4103/0366-6999.195467

    Article  PubMed  Google Scholar 

  24. Zhang P, Li Y, Tang W et al (2022) Theranostic nanoparticles with disease-specific administration strategies. Nano Today 42:101335. https://doi.org/10.1016/j.nantod.2021.101335

    Article  CAS  Google Scholar 

  25. Wang A-Y, Kuo C-L, Lin J-L et al (2010) Study of magnetic ferrite nanoparticles labeled with 99mTc-pertechnetate. J Radioanal Nucl Chem 284:405–413. https://doi.org/10.1007/s10967-010-0488-6

    Article  CAS  Google Scholar 

  26. Sigma-Aldrich IR Spectrum Table & Chart. https://www.sigmaaldrich.com/technical-documents/articles/biology/ir-spectrum-table.html. Accessed 10 Dec 2020

  27. Rainer E. Glaser vıbratıonal spectroscopy tutorıal: sulfur and phosphorus. https://faculty.missouri.edu/~glaserr/8160f10/A03_Silver.pdf. Accessed 10 Dec 2020

  28. Cao J (2004) Preparation and radiolabeling of surface-modified magnetic nanoparticles with rhenium-188 for magnetic targeted radiotherapy. J Magn Magn Mater 277:165–174. https://doi.org/10.1016/S0304-8853(03)00894-1

    Article  CAS  Google Scholar 

  29. Liu X, Kaminski MD, Guan Y et al (2006) Preparation and characterization of hydrophobic superparamagnetic magnetite gel. J Magn Magn Mater 306:248–253. https://doi.org/10.1016/j.jmmm.2006.03.049

    Article  CAS  Google Scholar 

  30. Medine EI, Ünak P, Sakarya S, Özkaya F (2011) Investigation of in vitro efficiency of magnetic nanoparticle-conjugated 125I-uracil glucuronides in adenocarcinoma cells. J Nanopart Res 13:4703–4715. https://doi.org/10.1007/s11051-011-0436-6

    Article  CAS  Google Scholar 

  31. Xu H, Tong N, Cui L et al (2007) Preparation of hydrophilic magnetic nanospheres with high saturation magnetization. J Magn Magn Mater 311:125–130. https://doi.org/10.1016/j.jmmm.2006.11.173

    Article  CAS  Google Scholar 

  32. Aziz M, Ismail AF (2017) X-ray photoelectron spectroscopy (XPS). In: Membrane characterization. Elsevier, pp 81–93

  33. Lowry GV, Hill RJ, Harper S et al (2016) Guidance to improve the scientific value of zeta-potential measurements in nanoEHS. Environ Sci Nano 3:953–965. https://doi.org/10.1039/C6EN00136J

    Article  CAS  Google Scholar 

  34. Häfeli UO, Sweeney SM, Beresford BA et al (1995) Effective targeting of magnetic radioactive90Y-microspheres to tumor cells by an externally applied magnetic field. Preliminary in vitro and in vivo results. Nucl Med Biol 22:147–155. https://doi.org/10.1016/0969-8051(94)00124-3

    Article  PubMed  Google Scholar 

  35. Munir T, Mahmood A, Fakhar-e-Alam M et al (2019) Treatment of breast cancer with capped magnetic-NPs induced hyperthermia therapy. J Mol Struct 1196:88–95. https://doi.org/10.1016/j.molstruc.2019.06.067

    Article  CAS  Google Scholar 

  36. Liu XL, Fan HM, Yi JB et al (2012) Optimization of surface coating on Fe3O4 nanoparticles for high performance magnetic hyperthermia agents. J Mater Chem 22:8235–8244. https://doi.org/10.1039/c2jm30472d

    Article  CAS  Google Scholar 

  37. Chapman MC, Lee AY, Hayward JH et al (2020) Superparamagnetic iron oxide sentinel node tracer injection: effects on breast MRI quality. J Breast Imaging 2:577–582. https://doi.org/10.1093/jbi/wbaa083

    Article  Google Scholar 

  38. Krischer B, Forte S, Niemann T et al (2018) Feasibility of breast MRI after sentinel procedure for breast cancer with superparamagnetic tracers. Eur J Surg Oncol 44:74–79. https://doi.org/10.1016/j.ejso.2017.11.016

    Article  PubMed  Google Scholar 

  39. Aras O, Pearce G, Watkins AJ et al (2018) An in-vivo pilot study into the effects of FDG-mNP in cancer in mice. PLoS ONE 13:e00202482. https://doi.org/10.1371/journal.pone.0202482

    Article  CAS  Google Scholar 

  40. Kim BM, Lee DR, Park JS et al (2016) Liquid crystal nanoparticle formulation as an oral drug delivery system for liver-specific distribution. Int J Nanomed. https://doi.org/10.2147/IJN.S97000

    Article  Google Scholar 

  41. Arias-Ramos N, Ibarra LE, Serrano-Torres M et al (2021) Iron oxide incorporated conjugated polymer nanoparticles for simultaneous use in magnetic resonance and fluorescent imaging of brain tumors. Pharmaceutics 13:1258. https://doi.org/10.3390/pharmaceutics13081258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zheltova V, Vlasova A, Bobrysheva N et al (2020) Fe3O4@HAp core–shell nanoparticles as MRI contrast agent: Synthesis, characterization and theoretical and experimental study of shell impact on magnetic properties. Appl Surf Sci 531:147352. https://doi.org/10.1016/j.apsusc.2020.147352

    Article  CAS  Google Scholar 

  43. Ariza de Schellenberger A, Kratz H, Farr T et al (2016) Labeling of mesenchymal stem cells for MRI with single-cell sensitivity. Int J Nanomed. https://doi.org/10.2147/IJN.S101141

    Article  Google Scholar 

  44. Payolla FB, Massabni AC, Orvig C (2019) Radiopharmaceuticals for diagnosis in nuclear medicine: A short review. Eclet Quim 44:11–19. https://doi.org/10.26850/1678-4618eqj.v44.3.2019.p11-19

    Article  CAS  Google Scholar 

  45. Heery CR, Madan RA, Stein MN et al (2016) Samarium-153-EDTMP (Quadramet®) with or without vaccine in metastatic castration-resistant prostate cancer: a randomized Phase 2 trial. Oncotarget 7:69014–69023. https://doi.org/10.18632/oncotarget.10883

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported financially by TUBITAK (The Scientific and Technological Research Council of Turkey) within the scope of the Bilateral Cooperation Project No. 218S749. The authors thank TUBITAK for the support. Volkan Yasakçı was also supported through the 100/2000 CoHE Doctorate Scholarship and Turkish Higher Education Council (YÖK) 100/2000 Scholarship. The authors thank the Turkish Higher Education Council (YÖK) and 100/2000 CoHE Ph.D. for their support. Dr. Omer Aras was partially supported through the NIH/NCI Cancer Support Grant P30 CA008748. The work was partially presented at the International Conference on Clinical PET-CT and Molecular Imaging in the Era of Theranostics, IPET-2020, IAEA-CN-285/52, and the International Nuclear Sciences and Technologies Conference (INSTEC-22).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volkan Yasakçı.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yasakçı, V., Tutun, E., Karatay, K.B. et al. A novel SPECT/MRI bimodal imaging probe: 99mTc-DPAPA-Fe3O4 nanoconjugate. J Radioanal Nucl Chem 332, 4651–4666 (2023). https://doi.org/10.1007/s10967-023-08875-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08875-8

Keywords

Navigation