Skip to main content
Log in

Existent forms and ecological risk assessment of uranium and heavy metals in soil at a uranium mining area in northern Guangdong, China

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The BCR continuous extraction method was used to extract soil samples from a uranium mining area in northern Guangdong, and the RSP and RAC evaluation methods were used to evaluate the ecological risk of soil contamination elements in the study area. The results showed that the soil was mainly in the residue state, but Mn was mainly in the reducible state (33.51%) and weakly acidic extractable (28.41%), and U was mainly in the oxidizable state (43.16%) and weakly acidic extractable (31.23%). U and Mn were the main contaminating elements in the study area, with high potential ecological risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zhu PF, Cai YQ, Guo QY, Liu WS, Li JH, Zhang ML, Qi FC, Zhang ZL, Jia LC, Xu H (2018) Analysis of the geological characteristics and resource potential of uranium mineralisation in China. Geol Anteced 25:148–158. https://doi.org/10.13745/j.esf.2018.03.012

    Article  CAS  Google Scholar 

  2. Li ZY, Qin MK, Fan HH, Cai YQ, Cheng JX, Guo DF, Ye FW, Fan G, Liu XY (2021) Major progress of uranium geoscience and technology in China in the last decade. Mineral Rock Geochem Bull 40:845–857. https://doi.org/10.19658/j.issn.1007-2802.2021.40.057

    Article  CAS  Google Scholar 

  3. Gao N, Huang Z, Liu HQ, Hou J, Liu XH (2019) Advances on the toxicity of uranium to different organisms. Chemosphere 237:124548. https://doi.org/10.1016/j.chemosphere.2019.124548

    Article  CAS  PubMed  Google Scholar 

  4. Galhardi JA, de Mello JWV, Wilkinson KJ (2020) Bioaccumulation of potentially toxic elements from the soils surrounding a legacy uranium mine in Brazil. Chemosphere 261:127679. https://doi.org/10.1016/j.chemosphere.2020.127679

    Article  CAS  PubMed  Google Scholar 

  5. Liu SF, Gao B, Yi L, Fang Z, Shi TC, Ding Y (2022) Distribution characteristics and risk assessment of arsenic and uranium in water environment of hailaer Basin. Modern Geol 5:1–9

    Google Scholar 

  6. Qin L, Dong FQ, Yang G, Han Y, Nie XQ, Zhang W, Zong MR (2020) Spatial distribution and environmental risk assessment of heavy metals identified in soil of a decommissioned uranium mining area. Hum Ecol Risk Assess Int J 26:1149–1163. https://doi.org/10.1080/10807039.2019.1630601

    Article  CAS  Google Scholar 

  7. Mohammadi AA, Zarei A, Esmaeilzadeh M, Taghavi M, Yousefi M, Yousefi Z, Sedighi F, Javan S (2020) Assessment of heavy metal pollution and human health risks assessment in soils around an industrial zone in Neyshabur. Iran Biol Trace Element Res 195:343–352. https://doi.org/10.1007/s12011-019-01816-1

    Article  CAS  Google Scholar 

  8. Ouyang J, Liu Z, Zhang L et al (2020) Analysis of influencing factors of heavy metals pollution in farmland-rice system around a uranium tailings dam. Process Saf Environ Prot 139:124–132. https://doi.org/10.1016/j.psep.2020.04.003

    Article  CAS  Google Scholar 

  9. Santos-Francés F, Pacheco EG, Martinez-Grana A, Rojo PA, Zarza CA, Sanchez AG (2018) Concentration of uranium in the soils of the west of Spain. Environ Pollut 236:1–11. https://doi.org/10.1016/j.envpol.2018.01.038

    Article  CAS  PubMed  Google Scholar 

  10. Wu D, Wang YY, Wang MC, Wei C, Hu GQ, He X, Fu W (2021) Basic characteristics of coal gangue in a small-scale mining site and risk assessment of radioactive elements for the surrounding soils. Minerals 11:647. https://doi.org/10.3390/min11060647

    Article  CAS  Google Scholar 

  11. Ahn Y, Yun HS, Pandi K, Park S, Ji M, Choi J (2020) Heavy metal speciation with prediction model for heavy metal mobility and risk assessment in mine-affected soils. Environ Sci Pollut Res 27:3213–3223. https://doi.org/10.1007/s11356-019-06922-0

    Article  CAS  Google Scholar 

  12. Gemeda FT, Guta DD, Wakjira FS, Gebresenbet G (2021) Occurrence of heavy metal in water, soil, and plants in fields irrigated with industrial wastewater in Sabata town, Ethiopia. Environ Sci Pollut Res 28:12382–12396. https://doi.org/10.1007/s11356-020-10621-6

    Article  CAS  Google Scholar 

  13. Hadzi GY, Ayoko GA, Essumang DK, Osae SKD (2019) Contamination impact and human health risk assessment of heavy metals in surface soils from selected major mining areas in Ghana. Environ Geochem Health 41:2821–2843. https://doi.org/10.1007/s10653-019-00332-4

    Article  CAS  PubMed  Google Scholar 

  14. You M, Huang YE, Lu J, Li CP (2016) Fractionation characterizations and environmental implications of heavy metal in soil from coal mine in Huainan, China. Environ Earth Sci 75:1–9. https://doi.org/10.1007/s12665-015-4815-7

    Article  CAS  Google Scholar 

  15. Hoshino M, Zhang M, Suzuki M, Tsukimura K, Ohta M (2020) Characterization of Pb-bearing minerals in polluted soils from closed mine sites. Water Air Soil Pollut 231:1–9. https://doi.org/10.1007/s11270-020-04548-4

    Article  CAS  Google Scholar 

  16. Vuong XT, Vu LD, Duong ATT, Duong HT, Hoang THT, Luu MNT, Nguyen TN, Nguyen VD, Nguyen TTT, Van TH, Minh TB (2022) Speciation and environmental risk assessment of heavy metals in soil from a lead/zinc mining site in Vietnam. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-022-04339-w

    Article  Google Scholar 

  17. Sungur A, Soylak M, Ozcan H (2019) Fractionation, source identification and risk assessments for heavy metals in soils near a small-scale industrial area (Çanakkale–Turkey). Soil Sedi Contam Int J 28:213–227. https://doi.org/10.1080/15320383.2018.1564735

    Article  CAS  Google Scholar 

  18. Liu S, Yu F, Zhang J (2022) Heavy-Metal Speciation Distribution and Adsorption Characteristics of Cr (VI) in the Soil within Sewage Irrigation Areas. Int J Environ Res Public Health 19:6309. https://doi.org/10.3390/ijerph19106309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Akoto O, Nimako C, Asante J, Bailey D, Bortey-Sam N (2019) Spatial distribution, exposure, and health risk assessment of bioavailable forms of heavy metals in surface soils from abandoned landfill sites in Kumasi, Ghana. Hum Ecol Risk Assess Int J 25:1870–1885. https://doi.org/10.1080/10807039.2018.1476125

    Article  CAS  Google Scholar 

  20. Fernández-Ondoño E, Bacchetta G, Lallena AM, Navarro FB, Ortiz I, Jimenez MN (2017) Use of BCR sequential extraction procedures for soils and plant metal transfer predictions in contaminated mine tailings in Sardinia. J Geochem Explor 172:133–141. https://doi.org/10.1016/j.gexplo.2016.09.013

    Article  CAS  Google Scholar 

  21. Xiao L, Guan DS, Peart MR, Chen YJ, Li QQ (2017) The respective effects of soil heavy metal fractions by sequential extraction procedure and soil properties on the accumulation of heavy metals in rice grains and brassicas. Environ Sci Pollut Res 24:2558–2571. https://doi.org/10.1007/s11356-016-8028-8

    Article  CAS  Google Scholar 

  22. Sungur A, Soylak M, Ozcan H (2014) Investigation of heavy metal mobility and availability by the BCR sequential extraction procedure: relationship between soil properties and heavy metals availability. Chem Speciat Bioavailab 26:219–230. https://doi.org/10.3184/095422914X14147781158674

    Article  CAS  Google Scholar 

  23. Shu XH, Zhang Q, Lu GN, Yi XY, Dang Z (2018) Pollution characteristics and assessment of sulfide tailings from the Dabaoshan Mine, China. Int Biodeterior Biodegrad 128:122–128. https://doi.org/10.1016/j.ibiod.2017.01.012

    Article  CAS  Google Scholar 

  24. Chen L, Huo Z, Zhou XF, Huang W, Liu S, Tang ZP, He HY (2022) Evaluation of ecotoxicity of uranium smelting area receiving effluent using ostracods. J Radio Nucl Chem 331:3427–3437. https://doi.org/10.1007/s10967-022-08404-z

    Article  CAS  Google Scholar 

  25. Liu J, Zhang SW, Li EW, Zhu YF, Cai HZ, Xia SS, Kong CC (2022) Effects of cubic ecological restoration of mining wasteland and the preferred restoration scheme. Sci Total Environ 851:158155. https://doi.org/10.1016/j.scitotenv.2022.158155

    Article  CAS  PubMed  Google Scholar 

  26. Lin CQ, Huang HB, Hu GR, Yu RL, Hao CL, Lin Y (2019) Assessment of the speciation and pollution of heavy metals in paddy soils from the Jiulong River Basin. Huan Jing ke Xue = Huanjing Kexue 40:453–460. https://doi.org/10.13227/j.hjkx.201805152

    Article  PubMed  Google Scholar 

  27. Hu QQ, Shen Q, Chen F, Yin B, Zou HG, Zhuang HJ, Zhang SW (2020) Reconstructed soil vertical profile heavy metal Cd occurrence and its influencing factors. Huanjing Kexue 41:2878–2888. https://doi.org/10.13227/j.hjkx.201911023

    Article  CAS  PubMed  Google Scholar 

  28. Zeng X, Chen Q, Tan Q, Xu H, Li W, Yang S, Wang JH, Ren JH, Ren JJ, Luo FJ, Tang JX, Wu L, Zhang YK, Liu DM (2021) Risk assessment of heavy metals in soils contaminated by smelting waste for the perspective of chemical fraction and spatial distribution. J Environ Eng Landsc Manag 29:101–110. https://doi.org/10.3846/jeelm.2021.14190

    Article  Google Scholar 

  29. Lu S, Wang YY, Teng YG, Yu X (2015) Heavy metal pollution and ecological risk assessment of the paddy soils near a zinc-lead mining area in Hunan. Environ Monit Assess 187:1–12. https://doi.org/10.1007/s10661-015-4835-5

    Article  CAS  Google Scholar 

  30. Pang WP, Qin FX, Lyu YC, Li YJ, Li G, Li XL (2016) Chemical speciations of heavy metals and their risk assessment in agricultural soils in a coal mining area from Xingren County, Guizhou Province, China. J Appl Ecol 27:1468–1478. https://doi.org/10.13287/j.1001-9332.201605.009

    Article  CAS  Google Scholar 

  31. Sahoo PK, Tripathy S, Panigrahi MK, Equeenuddin SM (2017) Anthropogenic contamination and risk assessment of heavy metals in stream sediments influenced by acid mine drainage from a northeast coalfield, India. Bull Eng Geol Env 76:537–552. https://doi.org/10.1007/s10064-016-0975-2

    Article  CAS  Google Scholar 

  32. NY/T 1377-2007 Agricultural industry standard of the People’s Republic of China: Determination of soil pH. https://www.docin.com/p-1785904812.html

  33. NY/T 1121.6-2006 Agricultural industry standard of the People’s Republic of China: Determination of soil organic matter. https://www.doc88.com/p-7148450889929.html

  34. Zhu XZ, Yao J, Wang F, Yuan ZM, Liu JL, Jordan G, Knudsen TS, Avdalovic J (2018) Combined effects of antimony and sodium diethyldithiocarbamate on soil microbial activity and speciation change of heavy metals. Implications for contaminated lands hazardous material pollution in nonferrous metal mining areas. J Hazard Mater 349:160–167. https://doi.org/10.1016/j.jhazmat.2018.01.044

    Article  CAS  PubMed  Google Scholar 

  35. Turekian KK, Wedepohl KH (1961) Distribution of the elements in some major units of the earth’s crust. Geol Soc Am Bull 72:175–192. https://doi.org/10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2

    Article  CAS  Google Scholar 

  36. Singh KP, Mohan D, Singh VK, Malik A (2005) Studies on distribution and fractionation of heavy metals in Gomti river sediments—a tributary of the Ganges, India. J Hydrol 312:14–27. https://doi.org/10.1016/j.jhydrol.2005.01.021

    Article  CAS  Google Scholar 

  37. Lu SJ, Teng YG, Wang YY, Wu J, Wang JS (2015) Research on the ecological risk of heavy metals in the soil around a Pb–Zn mine in the Huize County, China. Chin J Geochem 34:540–549. https://doi.org/10.1007/s11631-015-0062-6

    Article  CAS  Google Scholar 

  38. Qiao DH, Wang GS, Li XL, Wang S, Zhao YY (2020) Pollution, sources and environmental risk assessment of heavy metals in the surface AMD water, sediments and surface soils around unexploited Rona Cu deposit, Tibet China. Chemosphere 248:125988. https://doi.org/10.1016/j.chemosphere.2020.125988

    Article  CAS  PubMed  Google Scholar 

  39. Ihedioha JN, Ogili EO, Ekere NR, Ezeofor CC (2019) Risk assessment of heavy metal contamination of paddy soil and rice (Oryza sativa) from Abakaliki, Nigeria. Environ Monit Assess 191:1–16. https://doi.org/10.1007/s10661-019-7491-3

    Article  CAS  Google Scholar 

  40. GB 15618–2018 The State Standard of the Peopl’s Republic of China: Soil Environmental quality Standard for soil pollution risk control of agricultural land. http://www.doc88.com/p-0791745054055.html

  41. Xu LF, Liu TH (1996) Zonal differentiation of soil environmental background value and critical content in Guangdong Province. J South China Agric Univ 4:61–65

    Google Scholar 

  42. Wei FS, Teng EJ, Chen LQ (1991) Background content characteristics of uranium and thorium in soils of China and eastern China. Shanghai Environ Sci 10:37–39

    CAS  Google Scholar 

  43. Chang CY, Cao HX, Tao L, Lv YZ, Dong MG (2021) Research progress on stability and reactivation of soil heavy metals after solidification/stabilization. Soil 53:682–691. https://doi.org/10.13758/j.cnki.tr.2021.04.003

    Article  CAS  Google Scholar 

  44. Cun XN, Wu BL, Zhang HS, Sun L, Luo JJ, Li YQ, Pang K, Zhang Q (2016) Study on occurrence state of uranium in daying uranium deposit, ordos Basin. Northwestern Geol 49:198–212

    CAS  Google Scholar 

  45. Tang ZP, Men Q, Chen L, Ma RL, Zhou XF (2019) Speciation of uranium and heavy metals in surface sediments around a uranium mine in northern Guangdong. Uranium Mine and Mill 38:237–243. https://doi.org/10.13426/j.cnki.yky.2019.04.001

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (No. 41402002); Hunan Provincial Education Department (No. 22A0294; 22B0433); State Key Laboratory of Nuclear Resources and Environment (East China University of Technology) Open Fund Project (No. 2022NRE08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyang He.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Zhang, Z., Tang, Z. et al. Existent forms and ecological risk assessment of uranium and heavy metals in soil at a uranium mining area in northern Guangdong, China. J Radioanal Nucl Chem 332, 1805–1814 (2023). https://doi.org/10.1007/s10967-023-08870-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08870-z

Keywords

Navigation