Skip to main content
Log in

Sorption of long-lived 94Nb on magnetite: spectroscopic and electrochemical investigation of the associated mechanism

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The sorption study of long lived 94Nb isotope on magnetite was carried out in the pH range of 1–10, both in aerobic and anaerobic conditions. The present study is focused to understand the mechanism behind the sorption and to predict the role of magnetite in retarding the migration of the radionuclide. The sorption mechanism and the role of Fe(II) site of magnetite were investigated using solvent extraction, cyclic voltammetry, X-ray photoelectron and absorption spectroscopy. Insignificant difference in the sorption pattern and percentage sorption under aerobic and anaerobic conditions suggests similar sorption mechanism in both conditions. The oxidation states of Nb and Fe of magnetite remained unchanged after sorption process. In acidic medium, the sorption mainly occurs via ion exchange whereas in neutral/basic medium via covalent bond formation of Nb with magnetite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wiggins DJ, Franz JA (1978) Mobility of organic complexes of some non-TRU fission and activation products: a selective review. Battelle Pacific Northwest Labs, Richland, Wash

    Book  Google Scholar 

  2. Murali MS, Mathur JN (2002) Sorption characteristics of Am(III), Sr(II) and Cs(I) on bentonite and granite. J Radioanal Nucl Chem 254:129–136

    Article  CAS  Google Scholar 

  3. Tanaka T, Muraoka S (1999) Sorption characteristics of 237Np, 238Pu and 241Am in sedimentary materials. J Radioanal Nucl Chem 240:177–182

    Article  CAS  Google Scholar 

  4. Muller K, Foerstendorf H, BrendlerV BG (2009) Sorption of Np(V) onto TiO2, SiO2 and ZnO: an in-situ ATR-FT-IR spectroscopic study. Environ Sci Technol 43(20):7665–7670

    Article  PubMed  Google Scholar 

  5. Shaughnessy DA, Nitsche H, Booth CH, Shuh DK, Waychunas GA, Wilson RE, Gill H, Cantrell KJ, Serne RJ (2003) Molecular interfacial reaction between Pu(VI) and manganese oxide minerals magnetite and hausmannite. Environ Sci Technol 37(15):3367–3374

    Article  CAS  PubMed  Google Scholar 

  6. Gangotra S, Ouseph PM, Anantharaman S, Sahoo KC (2002) Gamma spectrometry studies on irradiated zircaloy pressure tubes, ZIRC-2002. BARC, Mumbai, India, pp 658–674

    Google Scholar 

  7. Jr Baes CF, Mesmer RE (1976) The hydrolysis of cations. Wiley, New York

    Google Scholar 

  8. Ghosh M, Remya Devi PS, Verma R, Reddy AVR (2015) Sorption of niobium on colloidal silica and the effect of humic acid. J Radioanal Nucl Chem 306:147–153

    Article  CAS  Google Scholar 

  9. Ghosh M, Swain KK, Verma R (2017) Interaction of niobium with iron-oxide colloids and the role of humic acid. J Environ Radioact 178(179):101–109

    Article  PubMed  Google Scholar 

  10. Ghosh M, Remya Devi PS, Swain KK, Verma R (2019) Sorption of Nb(V) on Pyrolusite (β-MnO2): effect of pH, humic acid, ionic strength, equilibration time and temperature. Appl Radiat Isot 154:108887

    Article  CAS  PubMed  Google Scholar 

  11. Wies M, Ahrens H, Denschlag HO, Fariwar M, Herrmann G, Trautmann N (1987) Rapid sorption of niobium on glass surface. RadiochimActa 42:201–203

    Google Scholar 

  12. Nese CP, Jo Y, Karsten F, Markus F, de Benny B, Marcus A, Xavier G (2022) Uptake of niobium by cement system relevant to nuclear waste disposal: impact of ISA and chloride. Cem Concr Res 153:106690

    Article  Google Scholar 

  13. Yamaguchi T, Ohira S, Hemmi K, Barr L, Shimada A, Maeda T, Lida Y (2020) Consideration on modelling of Nb sorption onto clay minerals. Radiochim Acta 108(11):873–877

    Article  CAS  Google Scholar 

  14. Gao Y, Shao Z, Xiao Z (2015) U(VI) sorption on illite: effect of pH, ionic strength, humic acid and temperature. J Radioanal Nucl Chem 303:867–876

    Article  CAS  Google Scholar 

  15. Hu B, Chen W, Zhang H, Sheng G (2010) Sorption of radionickel to goethite: effect of water quality parameters and temperature. J Radioanal Nucl Chem 285:389–398

    Article  CAS  Google Scholar 

  16. Romanchuk AU, Kalmykov SN, Egorov AV, Zubavichuss YV, Shiryaev AA, Batuk ON, Conradson SD, Pankratov DA, Presnyakov IA (2013) Formation of crystalline PuO2+x.nH2O nanoparticles upon sorption of Pu(V/VI) onto hematite. Geochimica et CosmochimicaActa 121:29–40

    Article  CAS  Google Scholar 

  17. Geckeis H, Lützenkirchen J, Robert P, Thomas R, Moritz S (2013) Mineral-water interface reactions of actinides. Chem Rev 113:1016–1062

    Article  CAS  PubMed  Google Scholar 

  18. Matthew AC, Edward RS (2002) Oxidative precipitation of groundwater-derived ferrous iron in the subterranean estuary of a coastal bay. Geophys Res Lett 29(10):85–91

    Google Scholar 

  19. Cornell RM, Schwertmann U (2000) The iron oxides: Structure, properties, reactions, occurrence and uses. Wiley-VCH, New York

    Google Scholar 

  20. Basu S, Nayak C, Yadav AK, Agrawal A, Poswal AK, Bhattacharyya D, Jha SN, Sahoo NK (2014) A comprehensive facility for EXAFS measurements at the INDUS-2 synchrotron source at RRCAT. Indore, India. J Phys Conf Ser 493:012032

    Article  Google Scholar 

  21. Kraus KA, Moore GE (1951) Anion exchange studies I. Separation of zirconium and niobium in HCl-HF mixtures. J Am Chem Soc 73:9–13

    Article  CAS  Google Scholar 

  22. Konigsberger DC, Prince R (1988) X-Ray absorption: principles, applications, techniques of EXAFS, SEXAFS and XANES. Wiley, New York

    Google Scholar 

  23. Newville M, Rave B, Haskel B, Rehr JJ, Stern EA, Yacoby Y (1995) Analysis of multiple scattering XAFS data using theoretical standards. Phys B 208(209):154–156

    Article  Google Scholar 

  24. Nakata K, Nagasaki S, Tanaka S, Tanaka T, Ogawa H (2002) Sorption and reduction of Neptunium(V) on the surface of iron oxides. Radiochim Acta 90:665–669

    Article  CAS  Google Scholar 

  25. Nakata K, Nagasaki S, Tanaka S, Sakamoto Y, Tanaka T, Ogawa H (2004) Reduction rate of Np(V) in hetrogenous solution with magnetite. Radiochim Acta 92:145–149

    Article  CAS  Google Scholar 

  26. Lee CP, Lan PL, Jan Y, Wei Y, Teng S, Hsu C (2006) Sorption of Cs on granite under aerobic and anaerobic conditions. Radiochim Acta 94:679–682

    Article  CAS  Google Scholar 

  27. Missana T, Maffiotte C, Gutierrez MG (2003) Surface reactions between nanocrystal line magnetite and uranyl. J Colloid Interf Sci 261(1):154–160

    Article  CAS  Google Scholar 

  28. Powell BA, Fjeld RA, Kaplan DI, Coates JT, Serkiz SM (2004) Pu(V) adsorption and reduction by synthetic magnetite. Environ Sci Technol 38(22):6016–6024

    Article  CAS  PubMed  Google Scholar 

  29. Lehto J, Hou X (2010) Chemistry and analysis of radionuclides: laboratory techniques and methodology. Wiley-VCH 2010, Germany

    Book  Google Scholar 

  30. Anderson K, Torstenfelt B, Rydberg J (1979) Leakage of 94Nb from an underground rock repository. SKB Technical Report 79–26

  31. Filella M, May PM (2020) The aqueous solution thermodynamics of niobium under conditions of environmental and biological interest. Appl Geochem 122:104729

    Article  CAS  Google Scholar 

  32. Bertrand PA, Choppin GR (1982) Separation of actinides in different oxidation states by solvent extraction. Radiochim Acta 31:135–137

    Article  CAS  Google Scholar 

  33. Poskanzer AM Jr, Foreman BM (1961) A summary of TTA extraction coefficients. J Inorg Nucl Chem 16:323–336

    Article  CAS  Google Scholar 

  34. Moore FL (1959) Selective liquid-liquid extraction of iron with 2-theonyltrifluoroacetone. Anal Chem 30(7):114–1151

    Google Scholar 

  35. Sanchez AL, Murray JW, Sibley TH (1985) The adsorption of plutonium IV and V on goethite. Geochim Cosmochim Acta 49:2297–2307

    Article  CAS  Google Scholar 

  36. Yamashita T, Hayes P (2008) Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl Surf Sci 254:2441–2448

    Article  CAS  Google Scholar 

  37. Wilson D, Langell MA (2014) XPS analysis of oleylamine/oleic acid capped Fe3O4 nanoparticles as a function of temperature. Appl Surf Sci 303:6–13

    Article  CAS  Google Scholar 

  38. Lesiak B, Rangam N, Jiricek P, Gordeev I, Tóth J, Kövér L, Mohai M, Borowicz P (2019) Surface study of Fe3O4 nanoparticles functionalized with biocompatible adsorbed molecules. Front Chem 7:1–15

    Article  Google Scholar 

  39. Poulin S, Franc R, Moreau-Be´langer L, Sacher E (2010) Confirmation of X-ray Photoelectron spectroscopy peak attributions of nanoparticulate iron oxides, using symmetric peak component line shapes. J Phys Chem C 114:10711–10718

    Article  CAS  Google Scholar 

  40. Das D, Sureshkumar MK, Koley S, Mithal N, Pillai CGS (2010) Sorption of uranium on magnetite nanoparticles. J Radioanal Nucl Chem 285:447–454

    Article  CAS  Google Scholar 

  41. Özera N, Rubin MD, Lampert CM (1996) Optical and electrochemical characteristics of niobium oxide films prepared by sol-gel process and magnetron sputtering: a comparison. Sol Energy Mater Sol Cells 40(4):285–296

    Article  Google Scholar 

  42. Bahl MK (1975) ESCA studies of some niobium compounds. J Phys Chem Solids 36:485–491

    Article  CAS  Google Scholar 

  43. White FA, Peterson M (1996) Reduction of aqueous transition metal species on the surface of Fe(II) containing oxides. Geochim et Cosmochim Acta 60:3799–3814

    Article  CAS  Google Scholar 

  44. White FA, Yee A (1985) Aqueous oxidation reduction kinetics associated with coupled electron cation transfer from iron containing silicates. Geochim et Cosmochim Acta 49:1263–1275

    Article  CAS  Google Scholar 

  45. White FA, Peterson ML Jr, Hochella MF (1994) Electrochemistry and dissolution kinetics of magnetite and ilmenite. Geochim et Cosmochim Acta 58(8):1859–1875

    Article  CAS  Google Scholar 

  46. Wiatrowski HA, Das S, Kukkadapu R, Ilton ES, Barkay T, Yee N (2009) Reduction of Hg(II) to Hg by magnetite. Environ Sci Technol 43:5307–5313

    Article  CAS  PubMed  Google Scholar 

  47. Standard reduction potentials, Freeman WH, 2010

  48. Sherrman LR, Archer VS (1970) Electrochemistry of niobium pentachloride in N, N –dimethyl formamide. Anal Chem 42(12):1356–1361

    Article  Google Scholar 

  49. Bunker G (2010) Introduction to XAFS: a practical guide to X-ray absorption fine structure spectroscopy. Cambridge University Press, New York

    Book  Google Scholar 

  50. Combes JM, Chisholm-Brause CJ Jr, Brown GE, Parks GA (1992) EXAFS spectroscopic study of neptunium sorption at the α-FeOOH/water interface. Environ Sci Technol 26(2):376–383

    Article  CAS  Google Scholar 

  51. Arai Y, Moran PB, Honeyman BD, Davis JA (2007) In situ spectroscopic evidence for neptunium-carbonate inner-sphere and outer-sphere ternary surface complexes on hematite surfaces. Environ Sci Technol 41:3940–3944

    Article  CAS  PubMed  Google Scholar 

  52. Bots P, Shaw S, Law GTW, Marshall TA, Mosselmans JFW, Morris K (2016) Controls on the fate and speciation of Np(V) during iron (Oxyhydr)oxide crystallization. Environ Sci Technol 50:3382–3390

    Article  CAS  PubMed  Google Scholar 

  53. Waite TD, Davis JA, Payne TE, Waychunas GA, Xu N (1994) Uranium adsorption to ferrihydrite: application of a surface complexation model. Geochim Cosmochim Acta 58(24):5465–5478

    Article  CAS  Google Scholar 

  54. Marshall TA, Morris K, Law GTW, Livens FR, Mosselman JFW, Bots P, Shaw S (2014) Incorporation of uranium into hematite during crystallization from ferrihydrite. Environ Sci Technol 48:3724–3731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. McCarthy KF, Monti M, Nie S, Siegel D, Starodub AE, Gabaly FE, McDaniel AH, Shavorskiy A, Tyliszczak T, Bluhm H, Bartelt NC, de La Figuera J (2014) Oxidation of magnetite to hematite observed by in situ spectroscopy and microscopy. J Phys Chem C 118:19768–19777

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MG: Conceptualization, Methodology, Investigation, Writing-original draft. AKY: Investigation, Data interpretation, Writing-review & editing. AKD: Investigation, Data interpretation. MKD: Investigation, Data interpretation. KKS: Supervision, Resources, Writing-review & editing.

Corresponding author

Correspondence to K. K. Swain.

Ethics declarations

Conflict of interest

It is declared that, there is no known conflict of interest regarding the work reported in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 717 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, M., Yadav, A.K., Debnath, A.K. et al. Sorption of long-lived 94Nb on magnetite: spectroscopic and electrochemical investigation of the associated mechanism. J Radioanal Nucl Chem 332, 1969–1979 (2023). https://doi.org/10.1007/s10967-023-08867-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08867-8

Keyword

Navigation