Skip to main content
Log in

Determination of rare earth elements in uranium ores by ICP-MS after total dissolution with NH4F and matrix separation with TRU resin

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The paper describes a novel total dissolution method of uranium ores with ammonium fluoride (NH4F), combined with matrix separation with TRU resin, which allowed the accurate measurement of rare earth elements by inductively coupled plasma mass spectrometry. The recommended amount of NH4F and conditions of separation were discussed. Rock standard reference materials and actual uranium ores were analyzed to further demonstrate the effectiveness of the method. These findings indicate the potential for using this new method in nuclear forensic science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gary RE (2020) Nuclear forensics: how science helps stop the trafficking of nuclear materials. B Atom Sci 76:263–270

    Article  Google Scholar 

  2. Tandon L, Hastings E, Banar J, Barnes J, Beddingfield D, Decker D, Dyke J, Farr D, FitzPatrick J, Gallimore D, Garner S, Gritzo R, Hahn T, Havrilla G, Johnson B, Kuhn K, LaMont S, Langner D, Lewis C, Majidi V, Martinez P, McCabe R, Mecklenburg S, Mercer D, Meyers S, Montoya V, Patterson B, Pereyra RA, Porterfield D, Poths J, Rademacher D, Ruggiero C, Schwartz D, Scott M, Spencer K, Steiner R, Villarreal R, Volz H, Walker L, Wong A, Worley C (2008) Nuclear, chemical, and physical characterization of nuclear materials. J Radioanal Nucl Chem 276:467–473

    Article  CAS  Google Scholar 

  3. Varga Z, Krajko J, Penkin M, Novak M, Eke Z, Wallenius M, Mayer K (2017) Identification of uranium signatures relevant for nuclear safeguards and forensics. J Radioanal Nucl Chem 312:639–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Varga Z, Wallenius M, Mayer K (2010) Origin assessment of uranium ore concentrates based on their rare-earth elemental impurity pattern. Radiochim Acta 98:771–778

    Article  CAS  Google Scholar 

  5. Khumalo N, Mathuthu M (2018) Determination of trace elements and lanthanide (REE) signatures in uranium mine products in South Africa by means of inductively coupled plasma mass spectrometry. J Geochem Explor 186:235–242

    Article  CAS  Google Scholar 

  6. John SOO, Usman IT, Akpa TC, Ibrahim U (2021) Rare earth elements in Uranium ore for nuclear forensic application. IOP Conf Ser Earth Environ Sci 655:012075

    Article  Google Scholar 

  7. Mercadier J, Cuney M, Lach P, Boiron M-C, Bonhoure J, Richard A, Leisen M, Kister P (2011) Origin of uranium deposits revealed by their rare earth element signature. Terra Nova 23:264–269

    Article  CAS  Google Scholar 

  8. Jarvis KE (1988) Inductively coupled plasma mass spectrometry: a new technique for the rapid or ultra-trace level determination of the rare-earth elements in geological materials. Chem Geol 68:31–39

    Article  CAS  Google Scholar 

  9. Baghaliannejad R, Aghahoseini M, Amini MK (2021) Determination of rare earth elements in uranium materials by ICP-MS and ICP-OES after matrix separation by solvent extraction with TEHP. Talanta 222:121509

    Article  CAS  PubMed  Google Scholar 

  10. Zhang W, Hu ZC (2019) Recent advances in sample preparation methods for elemental and isotopic analysis of geological samples. Spectrochim Acta Part B At Spectrosc 160:105690

    Article  CAS  Google Scholar 

  11. Whitty-Léveillé L, Turgeon K, Bazin C, Larivière D (2017) A comparative study of sample dissolution techniques and plasma-based instruments for the precise and accurate quantification of REEs in mineral matrices. Anal Chim Acta 961:33–41

    Article  PubMed  Google Scholar 

  12. Mnculwane HT (2022) Rare earth elements determination by inductively coupled plasma mass spectrometry after alkaline fusion preparation. Analytica 3:135–143

    Article  Google Scholar 

  13. Bayon G, Barrat JA, Etoubleau J, Benoit M, Bollinger C, Révillon S (2009) Determination of rare earth elements, Sc, Y, Zr, Ba, Hf and Th in geological samples by ICP-MS after Tm addition and alkaline fusion. Geostand Geoanal Res 33:51–62

    Article  CAS  Google Scholar 

  14. Yokoyama T, Makishima A, Nakamura E (1999) Evaluation of the coprecipitation of incompatible trace elements with fluoride during silicate rock dissolution by acid digestion. Chem Geol 157:175–187

    Article  CAS  Google Scholar 

  15. Yan H, Liu XM, Zhang F, Ma KQ, Shao XP, Feng Cheng W, Han J, Bu WT, Yang CT, Li LB, Hu S (2022) A simple method for Ce–Nd separation using nano-NaBiO3: application in the isotopic analysis of U, Sr, Pb, Nd, and Hf in uranium ores. Talanta 245:123443

    Article  CAS  PubMed  Google Scholar 

  16. Balcerzak M (2002) Sample digestion methods for the determination of traces of precious metals by spectrometric techniques. Anal Sci 18:737–750

    Article  CAS  PubMed  Google Scholar 

  17. Caro G, Bourdon B, Birck J-L, Moorbath S (2006) High-precision 142Nd/144Nd measurements in terrestrial rocks: constraints on the early differentiation of the Earth’s mantle. Geochim Cosmochim Acta 70:164–191

    Article  CAS  Google Scholar 

  18. Kentaro N, Qing C (2007) Precise determination of ultra-low (sub-ng g-1) level rare earth elements in ultramafic rocks by quadrupole ICP-MS. Geostand Geoanal Res 31:185–197

    Article  Google Scholar 

  19. Yokoyama T, Makishima A, Nakamura E (1999) Separation of thorium and uranium from silicate rock samples using two commercial extraction chromatographic resins. Anal Chem 71:135–141

    Article  CAS  PubMed  Google Scholar 

  20. Zhang W, Qi L, Hu Z, Zheng C, Liu Y, Chen H, Gao S, Hu S (2016) An investigation of digestion methods for trace elements in bauxite and their determination in ten bauxite reference materials using inductively coupled plasma-mass spectrometry. Geostand Geoanal Res 40:195–216

    Article  CAS  Google Scholar 

  21. Takei H, Yokoyama T, Makishima A, Nakamura E (2001) Formation and suppression of AlF3 during HF digestion of rock samples in Teflon bomb for precise trace element analyses by ICP-MS and ID-TIMS. Proc Jpn Acad SerB 77:13–17

    Article  Google Scholar 

  22. Zhang W, Hu ZC, Liu YS, Chen L, Chen HH, Li M, Zhao LS, Hu SH, Gao S (2012) Reassessment of HF/HNO3 decomposition capability in the high-pressure digestion of felsic rocks for multi-element determination by ICP-MS. Geostand Geoanal Res 36:271–289

    Article  CAS  Google Scholar 

  23. Hu Z, Zhang W, Liu Y, Chen HM, Gaschnig R, Zong K, Li M, Gao S, Hu S (2013) Rapid bulk rock decomposition by ammonium fluoride (NH4F) in open vessels at an elevated digestion temperature. Chem Geol 355:144–152

    Article  CAS  Google Scholar 

  24. Hu ZC, Gao S, Liu YS, Hu SH, Zhao LS, Li YX, Wang Q (2010) NH4F assisted high pressure digestion of geological samples for multi-element analysis by ICP-MS. J Anal At Spectrom 25:408–413

    Article  CAS  Google Scholar 

  25. Varga Z, Katona R, Stefánka Z, Wallenius M, Mayer K, Nicholl A (2010) Determination of rare-earth elements in uranium-bearing materials by inductively coupled plasma mass spectrometry. Talanta 80:1744–1749

    Article  CAS  PubMed  Google Scholar 

  26. Barrat J-A, Bayon G, Wang X, Goff SL, Rouget M-L, Gueguen B, Salem DB (2020) A new chemical separation procedure for the determination of rare earth elements and yttrium abundances in carbonates by ICP-MS. Talanta 219:121244

    Article  CAS  PubMed  Google Scholar 

  27. Balboni E, Simonetti A, Spano T, Cook ND, Burns PC (2017) Rare earth element fractionation in uranium ore and its U(VI) alteration minerals. Appl Geochem 87:84–92

    Article  CAS  Google Scholar 

  28. Rucandio MI (1997) Cation-exchange isolation and ICP-AES determination of rare earth elements in geological silicate materials. Fresenius J Anal Chem 357:661–669

    Article  CAS  Google Scholar 

  29. Hastiawan I, Bings NH, Broekaert JAC (2015) Development and optimization of pre-concentration procedure of rare-earth elements (REEs) in their minerals, using microwave-assisted sample dissolution for ICP-atomic emission spectrometric detection. Procedia Chem 17:93–98

    Article  CAS  Google Scholar 

  30. Mizutani Y, Hidaka H, Yoneda S (2020) Chemical separation and determination of the isotopic compositions of dysprosium, erbium and ytterbium in geochemical materials by thermal ionization mass spectrometry. Geochem J 54:381–391

    Article  CAS  Google Scholar 

  31. Premadas A (2003) Cation exchange chromatographic group separation and ICP-AES determination of rare earth elements and yttrium in refractory minerals zircon, ilmenite, rutile, columbite-tantalite, garnet, and silliminite. At Spectrosc 24:149–158

    CAS  Google Scholar 

  32. Makishima A (2016) Thermal ionization mass spectrometry (TIMS): silicate digestion, separation, measurement, 1st edn. Wiley-VCH, Germany

    Book  Google Scholar 

  33. Bradley VC, Weilert TM, Brockman JD (2021) Innovative high-temperature ammonium bifluoride fusion and rapid analysis of elements with nuclear forensic value. Talanta 221:121622

    Article  CAS  PubMed  Google Scholar 

  34. Benjamin TM, Debra AB, Shalina CM, Brian WT, Zirakparvar NA, Kayron TR, Cole RH (2021) Rapid and automated separation of uranium ore concentrates for trace element analysis by inductively coupled plasma—optical emission spectroscopy/triple quadrupole mass spectrometry. Spectrochim Acta Part B At Spectrosc 179:106097

    Article  Google Scholar 

  35. Thompson JJ, Houk RS (1987) A study of internal standardization in inductively coupled plasma mass spectrometry. Appl Spectrosc 41:801–806

    Article  CAS  Google Scholar 

  36. Hu SH, Lin SL, LIu YS, Gao S, (2000) Studies on the calibration of matrix effects and polyatomic ion for rare earth elements in geochemical samples by ICP-MS. Chem J Chin Univ 21:368–372

    CAS  Google Scholar 

  37. Wang YM, Wang XH, He HL, Gao YS, Fan XT, Wen HL (2009) The minimum sampling mass of geostandards reference materials. Geol Bull China 28:804–807

    Google Scholar 

  38. Anders E, Grevesse N (1989) Abundances of the elements: meteoritic and solar. Geochim Cosmochim Acta 53:197–214

    Article  CAS  Google Scholar 

  39. Horwitz EP, Dietz ML, Chiarizia R, Diamond H, Maxwell SL, Nelson MR (1995) Separation and preconcentration of actinides by extraction chromatography using a supported liquid anion exchanger: application to the characterization of high-level nuclear waste solutions. Anal Chim Acta 310:63–78

    Article  CAS  Google Scholar 

  40. Horwitz EP, Chiarizia R, Dietz ML, Diamond H, Nelson DM (1993) Separation and preconcentration of actinides from acidic media by extraction chromatography. Anal Chim Acta 281:361–372

    Article  CAS  Google Scholar 

  41. Dakalo M, Vera U, Manny M, Wanke H (2021) Rare earth elements in uranium ore deposits from Namibia: a nuclear forensics tool. J Environ Radioact 237:106668

    Article  Google Scholar 

  42. Shen GY, Xue QB (2011) Geological and geochemical characterisics of Yanshanian perdu rhyolite porphyry in Guyuan volcanic basin. Miner Resour Ageol 25:412–435

    Google Scholar 

  43. Yan Y, Zhang ZS, Shi QP (2019) Trace element geochemical characteristics of Bayanwula uranium deposit in Erlian basin. World Nucl Geosci 36:21–29

    Google Scholar 

Download references

Acknowledgements

We thank the Department of Radiochemistry of the China Institute of Atomic Energy for support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lili Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, H., Zhao, X., Zhang, Y. et al. Determination of rare earth elements in uranium ores by ICP-MS after total dissolution with NH4F and matrix separation with TRU resin. J Radioanal Nucl Chem 332, 1909–1916 (2023). https://doi.org/10.1007/s10967-023-08863-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08863-y

Keywords

Navigation