Skip to main content
Log in

Preparation of ammonium 12-molybdophosphate loaded mesoporous silica for adsorption of cesium ion from aqueous solution

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Novel ammonium 12-molybdophosphate loaded mesoporous silica (A-SBA-15) materials were synthesized and used to remove Cs+ from aqueous solution. The effects of initial Cs+ concentration, contact time, pH value and temperature on Cs+ adsorption were investigated. It was found that Cs+ adsorption capacity was significantly improved by ammonium 12-molybdophosphate loading. The obtained A-SBA-15 exhibited rapid (20 min) and high Cs+ adsorption (46.8 mg/g). The adsorption process can be well fitted by Langmuir and Pseudo-second order models. The adsorption mechanism was ion exchange. Furthermore, the adsorption was spontaneous, endothermic and entropy-increasing. The results demonstrated that A-SBA-15 was a promising Cs+ adsorbent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Karamanis D, Assimakopoulos PA (2007) Efficiency of aluminum-pillared montmorillonite on the removal of cesium and copper from aqueous solutions. Water Res 41:1897–1906

    Article  CAS  PubMed  Google Scholar 

  2. Deng H, Li YX, Wu L, Ma X (2016) The novel composite mechanism of ammonium molybdophosphate loaded on silica matrix and its ion exchange breakthrough curves for cesium. J Hazard Mater 324:348–356

    Article  PubMed  Google Scholar 

  3. Deng H, Li YX, Huang Y, Ma X, Wu L, Cheng TH (2016) An efficient composite ion exchanger of silica matrix impregnated with ammonium molybdophosphate for cesium uptake from aqueous solution. Chem Eng J 286:25–35

    Article  CAS  Google Scholar 

  4. Rogers H, Bowers J, Gates-Anderson D (2012) An isotope dilution-precipitation process for removing radioactive cesium from wastewater. J Hazard Mater 243:124–129

    Article  CAS  PubMed  Google Scholar 

  5. Miah MY, Volcheka K, Kuang W, Tezel F (2010) Kinetic and equilibrium studies of cesium adsorption on ceiling tiles from aqueous solutions. J Hazard Mater 183:712–717

    Article  CAS  PubMed  Google Scholar 

  6. Smit JVR (1958) Ammonium salts of the heteropolyacids as cation exchangers. Nature 181:1530–1531

    Article  CAS  Google Scholar 

  7. Smit JVR, Robb W, Jacobs JJ (1959) Cation exchange on ammonium molybdophosphate-I: the alkali metals. J Inorg Nucl Chem 12:104–112

    Article  CAS  Google Scholar 

  8. Krtil J (1962) Exchange properties of ammonium salts of 12-heteropolyacids-IV: Cs exchange on ammonium phosphotungstate and phosphomolybdate. J Inorg Nucl Chem 24:1139–1144

    Article  CAS  Google Scholar 

  9. Hashemikia S, Hemmatinejad N, Ahmadi E, Montazer M (2015) Optimization of tetracycline hydrochloride adsorption on amino modified SBA-15 using response surface methodology. J Colloid Interf Sci 443:105–114

    Article  CAS  Google Scholar 

  10. Aguado J, Arsuaga JM, Arencibia A, Lindo M, Gascón V (2009) Aqueous heavy metals removal by adsorption on amine-functionalized mesoporous silica. J Hazard Mater 163:213–221

    Article  CAS  PubMed  Google Scholar 

  11. Sheng W, Wei W, Li J, Qi X, Zuo G, Chen Q, Pan X, Dong W (2016) Amine-functionalized magnetic mesoporous silica nanoparticles for DNA separation. Appl Surf Sci 387:1116–1124

    Article  CAS  Google Scholar 

  12. Jamali MR, Assadi Y, Shemirani F, Salavati-Niasari M (2007) Application of thiophene-2-carbaldehyde-modified mesoporous silica as a new sorbent for separation and preconcentration of palladium prior to inductively coupled plasma atomic emission spectrometric determination. Talanta 71:1524–1529

    Article  CAS  PubMed  Google Scholar 

  13. Fu L, Li S, Han Z, Liu H, Yang H (2014) Tuning the wettability of mesoporous silica for enhancing the catalysis efficiency of aqueous reactions. Chem Commun 50:10045–10048

    Article  CAS  Google Scholar 

  14. Takahashi H, Li B, Sasaki T, Miyazaki C, Kajino T, Inagaki S (2000) Catalytic activity in organic solvents and stability of immobilized enzymes depend on the pore size and surface characteristics of mesoporous silica. Chem Mater 12:3301–3305

    Article  CAS  Google Scholar 

  15. Da’na E, Silva ND, Sayari A, (2011) Adsorption of copper on amine-functionalized SBA-15 prepared by co-condensation: equilibrium properties. Chem Eng J 166:454–459

    Article  Google Scholar 

  16. Wang S, Wang K, Dai C, Shi H, Li J (2015) Adsorption of Pb2+ on amino-functionalized core-shell magnetic mesoporous SBA-15 silica composite. Chem Eng J 262:897–903

    Article  CAS  Google Scholar 

  17. Dan H, Ding Y, Lu X, Chi F, Yuan S (2016) Adsorption of uranium from aqueous solution by mesoporous SBA-15 with various morphologies. J Radioanal Nucl Ch 310:1107–1114

    Article  CAS  Google Scholar 

  18. Gao Q, Xie JF, Shao YT, Chen C, Han B, Xia KS, Zhou CG (2016) Ultrafast and high-capacity adsorption of Gd(III) onto inorganic phosphorous acid modified mesoporous SBA-15. Chem Eng J 313:197–206

    Article  Google Scholar 

  19. Park Y, Shin WS, Choi SJ (2013) Ammonium salt of heteropoly acid immobilized on mesoporous silica (SBA-15): an efficient ion exchanger for cesium ion. Chem Eng J 220:204–213

    Article  CAS  Google Scholar 

  20. Ji G, Zhu G, Wang X, Wei Y, Yuan J, Gao C (2016) Preparation of amidoxime functionalized SBA-15 with platelet shape and adsorption property of U(VI). Sep Purif Technol 174:455–465

    Article  Google Scholar 

  21. Ivanets A, Milyutin V, Shashkova I, Kitikova N, Nekrasova N, Radkevich A (2020) Sorption of stable and radioactive Cs(I), Sr(II), Co(II) ions on Ti–Ca–Mg phosphates. J Radioanal Nucl Ch 324:1115–1123

    Article  CAS  Google Scholar 

  22. Dermeche L, Thouvenot R, Hocine S, Rabia C (2009) Preparation and characterization of mixed ammonium salts of Keggin phosphomolybdate. Inorg Chim Acta 362:3896–3900

    Article  CAS  Google Scholar 

  23. Maslova M, Mudruk N, Ivanets A, Shashkova I, Kitikova N (2020) A novel sorbent based on Ti–Ca–Mg phosphates: synthesis, characterization, and sorption properties. Environ Sci Pollut R 27:3933–3949

    Article  CAS  Google Scholar 

  24. Nilchi A, Saberi R, Moradi M, Azizpour H, Zarghami R (2012) Evaluation of AMP-PAN composite for adsorption of Cs+ ions from aqueous solution using batch and fixed bed operations. J Radioanal Nucl Chem 292:609–617

    Article  CAS  Google Scholar 

  25. Ivanets AI, Shashkova IL, Drozdova NV, Davydov DYu, Radkevich AV (2014) Recovery of cesium ions from aqueous solutions with composite sorbents based on tripolite and copper(II) and nickel(II) ferrocyanides. Radiochemistry 56:524–528

    Article  CAS  Google Scholar 

  26. Ivanets AI, Shashkova IL, Kitikova NV, Maslova MV, Mudruk NV (2019) New heterogeneous synthesis of mixed Ti–Ca–Mg phosphates as efficient sorbents of 137Cs, 90Sr and 60Co radionuclides. J Taiwan Inst Chem E 104:151–159

    Article  CAS  Google Scholar 

  27. Shichalin OO, Papynov EK, Nepomnyushchaya VA, Ivanets AI, Belov AA, Dran’kov AN, Yarusova SB, Buravlev IYu, Tarabanova AE, Fedorets AN, Azon SA, Kornakova ZE, Budnitskiy SYu, Tananaev IG, Shi Y, Xiong YF, Wang HB, (2022) Hydrothermal synthesis and spark plasma sintering of NaY zeolite as solid-state matrices for cesium-137 immobilization. J Eur Ceram Soc 42:3004–3014

    Article  CAS  Google Scholar 

  28. Yarusova SB, Shichalin OO, Belov AA, Azon SA, Buravlev IYu, Golub AV, Mayorov VYu, Gerasimenko AV, Papynov EK, Ivanets AI, Buravleva AA, Merkulov EB, Nepomnyushchaya VA, Kapustina OV, Gordienko PS (2022) Synthesis of amorphous KAlSi3O8 for cesium radionuclide immobilization into solid matrices using spark plasma sintering technique. Ceram Int 48:3808–3817

    Article  CAS  Google Scholar 

  29. Dran’kov A, Shichalin O, Papynov E, Nomerovskii A, Mayorov V, Pechnikov V, Ivanets A, Buravlev I, Yarusova S, Zavjalov A, Ognev A, Balybina V, Lembikov A, Tananaev I, Shapkin N (2022) Hydrothermal synthesis, structure and sorption performance to cesium and strontium ions of nanostructured magnetic zeolite composites. Nucl Eng Technol 54:1991–2003

    Article  CAS  Google Scholar 

  30. Ivanets A, Shashkova I, Kitikova N, Radkevich A, Venhlinskaya E, Dzikaya A, Trukhanov AV, Sillanpää M (2021) Facile synthesis of calcium magnesium zirconium phosphate adsorbents transformed into MZr4P6O24 (M: Ca, Mg) ceramic matrix for radionuclides immobilization. Sep Purif Technol 272:118912

    Article  CAS  Google Scholar 

  31. Ivanets AI, Srivastava V, Kitikova NV, Shashkova IL, Sillanpää M (2017) Kinetic and thermodynamic studies of the Co(II) and Ni(II) ions removal from aqueous solutions by Ca–Mg phosphates. Chemosphere 171:348–354

    Article  CAS  PubMed  Google Scholar 

  32. Zhang X, Jiao C, Wang J, Qi L, Li R, Yang P, Zhang M (2015) Removal of uranium (VI) from aqueous solutions by magnetic Schiff base: kinetic and thermodynamic investigation. Chem Eng J 273:296–306

    Google Scholar 

  33. Lima EC, Hosseini-Bandegharaei A, Moreno-Piraján JC, Anastopoulos I (2019) A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J Mol Liq 273:425–434

    Article  CAS  Google Scholar 

  34. Inglezakis VJ, Zorpas AA (2012) Heat of adsorption, adsorption energy and activation energy in adsorption and ion exchange system. Desalin Water Treat 39:149–157

    Article  CAS  Google Scholar 

  35. Albadarin AB, Mangwandi C, Al-Muhtaseb AH, Walker GM, Ahmad MNM (2012) Kinetic and thermodynamics of chromium ions adsorption onto low-cost dolomite adsorbent. Chem Eng J 179:193–202

    Article  CAS  Google Scholar 

  36. Unuabonah EI, Adebowale KO, Olu-Owolabi BI, Yang LZ, Kong LX (2008) Adsorption of Pb (I) and Cd (II) from aqueous solutions onto sodium tetraborate-modified kaolinite clay: equilibrium and thermodynamic studies. Hydrometallurgy 93:1–9

    Article  CAS  Google Scholar 

  37. Yavuz Ö, AltunKaynak Y, Güzel F (2003) Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite. Water Res 37:948–952

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Zhong, X. Preparation of ammonium 12-molybdophosphate loaded mesoporous silica for adsorption of cesium ion from aqueous solution. J Radioanal Nucl Chem 332, 1901–1907 (2023). https://doi.org/10.1007/s10967-023-08860-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08860-1

Keywords

Navigation