Skip to main content
Log in

Determination of environmental gaseous 129I trapped in charcoal cartridges by ICP-MS/MS

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

For environmental monitoring and radioecological studies, organic and inorganic 129I is often trapped in active charcoal. The analysis of this radionuclide can be difficult because of the low-level activities involved and its physico-chemical properties (e.g., volatility and multiple oxidation degrees). This study proposes a new method for 129I analysis by ICP-MS/MS, which consists in the extraction of iodine from charcoal by acid digestion followed by purification using a commercial specific resin. This new method allows reaching environmental levels of gaseous 129I near the fuel reprocessing plant of La Hague (France) with a limit of detection of only 2 mBq sample−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. García-Toraño E, Altzitzoglou T, Auerbach P et al (2018) The half-life of 129I. Appl Radiat Isot 140:157–162. https://doi.org/10.1016/j.apradiso.2018.06.007

    Article  CAS  PubMed  Google Scholar 

  2. Carpenter LJ, Chance RJ, Sherwen T et al (2021) Marine iodine emissions in a changing world. Proc R Soc Math Phys Eng Sci 477:20200824. https://doi.org/10.1098/rspa.2020.0824

    Article  Google Scholar 

  3. Fuge R, Johnson CC (2015) Iodine and human health, the role of environmental geochemistry and diet, a review. Appl Geochem 63:282–302. https://doi.org/10.1016/j.apgeochem.2015.09.013

    Article  CAS  Google Scholar 

  4. Hou X, Hansen V, Aldahan A et al (2009) A review on speciation of iodine-129 in the environmental and biological samples. Anal Chim Acta 632:181–196. https://doi.org/10.1016/j.aca.2008.11.013

    Article  CAS  PubMed  Google Scholar 

  5. Aneheim E, Bernin D, Foreman MRStJ (2018) Affinity of charcoals for different forms of radioactive organic iodine. Nucl Eng Des 328:228–240. https://doi.org/10.1016/j.nucengdes.2018.01.007

    Article  CAS  Google Scholar 

  6. Institut de Radioprotection et de Sûreté Nucléaire (2021) Bilan de l’état radiologique de l’environnement français de 2018 à 2020. https://www.irsn.fr/FR/expertise/rapports_expertise/Documents/environnement/IRSN-ENV_Bilan-Radiologique-France-2018-2020.pdf . Accessed 24 Apr 2022

  7. Osterc A, Stibilj V (2008) 127I and 129I/127I isotopic ratio in marine alga Fucus virsoides from the North Adriatic Sea. J Environ Radioact 99:757–765. https://doi.org/10.1016/j.jenvrad.2007.10.004

    Article  CAS  PubMed  Google Scholar 

  8. Koarashi J, Akiyama K, Asano T, Kobayashi H (2005) A practical method for monitoring 129I concentration in airborne release. J Radioanal Nucl Chem 267:155–159. https://doi.org/10.1007/s10967-006-0022-z

    Article  CAS  Google Scholar 

  9. Jabbar T, Wallner G, Steier P (2013) A review on 129I analysis in air. J Environ Radioact 126:45–54. https://doi.org/10.1016/j.jenvrad.2013.07.013

    Article  CAS  PubMed  Google Scholar 

  10. Llopart-Babot I, Vasile M, Dobney A et al (2022) On the determination of 36Cl and 129I in solid materials from nuclear decommissioning activities. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-022-08327-9

    Article  Google Scholar 

  11. Frechou C (2000) Optimisation of the measurement protocols of 129I and 129I/127I. In: Methodology establishment for the measurement in environmental matrices. CEA/Saclay, France

  12. Fréchou C, Calmet D (2003) 129I in the environment of the La Hague nuclear fuel reprocessing plant—from sea to land. J Environ Radioact 70:43–59. https://doi.org/10.1016/S0265-931X(03)00127-9

    Article  CAS  PubMed  Google Scholar 

  13. Francisco BBA, Bergl R, Zhao X-L et al (2020) Comparison of two methods to determine 129I in charcoal cartridge samples by AMS. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At 466:47–51. https://doi.org/10.1016/j.nimb.2019.12.015

    Article  CAS  Google Scholar 

  14. Jacobsen GE, Hotchkis MAC, Fink D et al (2000) AMS measurement of 129I, 36Cl and 14C in underground waters from Mururoa and Fangataufa atolls. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At 172:666–671. https://doi.org/10.1016/S0168-583X(00)00102-6

    Article  CAS  Google Scholar 

  15. Hou X, Hou Y (2012) Analysis of 129I and its application as environmental tracer. JAnal Sci Technol 3:135–153. https://doi.org/10.5355/JAST.2012.135

    Article  CAS  Google Scholar 

  16. Ohno T, Muramatsu Y, Toyama C et al (2013) Determination of 129I in Fukushima soil samples by ICP-MS with an octopole reaction system. Anal Sci 29:271–274. https://doi.org/10.2116/analsci.29.271

    Article  CAS  PubMed  Google Scholar 

  17. Kim J, Kim J-Y, Bae S-E et al (2021) Review of the development in determination of 129I amount and the isotope ratio of 129I/127I using mass spectrometric measurements. Microchem J 169:106476. https://doi.org/10.1016/j.microc.2021.106476

    Article  CAS  Google Scholar 

  18. Chang F, Chao J-H, Tien N-C (2022) Determination of 129I activities and interference in low level radioactive waste by alkaline fusion coupled with ICP-MS. J Radioanal Nucl Chem 331:2029–2036. https://doi.org/10.1007/s10967-022-08252-x

    Article  CAS  Google Scholar 

  19. Isnard H, Nonell A, Marie M, Chartier F (2016) Accurate measurements of 129I concentration by isotope dilution using MC-ICPMS for half-life determination. Radiochim Acta 104:131–139. https://doi.org/10.1515/ract-2015-2481

    Article  CAS  Google Scholar 

  20. Reid HJ, Bashammakh AA, Goodall PS et al (2008) Determination of iodine and molybdenum in milk by quadrupole ICP-MS. Talanta 75:189–197. https://doi.org/10.1016/j.talanta.2007.10.051

    Article  CAS  PubMed  Google Scholar 

  21. Nottoli E, Bienvenu P, Labet A et al (2014) Accurate determination of 129I concentrations and 129I/137Cs ratios in spent nuclear resins by accelerator mass spectrometry. Appl Radiat Isot 86:90–96. https://doi.org/10.1016/j.apradiso.2014.01.010

    Article  CAS  PubMed  Google Scholar 

  22. Mesko MF, Mello PA, Bizzi CA et al (2010) Iodine determination in food by inductively coupled plasma mass spectrometry after digestion by microwave-induced combustion. Anal Bioanal Chem 398:1125–1131. https://doi.org/10.1007/s00216-010-3766-9

    Article  CAS  PubMed  Google Scholar 

  23. Vanhoe H, Allemeersch FV, Versieck J, Dams R (1993) Effect of solvent type on the determination of total iodine in milk powder and human serum by inductively coupled plasma mass spectrometry. Analyst 118:1015–1019. https://doi.org/10.1039/AN9931801015

    Article  CAS  PubMed  Google Scholar 

  24. Fernández-Sánchez LM, Bermejo-Barrera P, Fraga-Bermudez JM et al (2007) Determination of iodine in human milk and infant formulas. J Trace Elem Med Biol 21:10–13. https://doi.org/10.1016/j.jtemb.2007.09.006

    Article  CAS  PubMed  Google Scholar 

  25. Maro D, Hebert D, Gandon R, Solier L (1999) Dosage par spectrométrie gamma de l’iode 129 dans les échantillons biologiques marins et terrestres Application à des algues prélevées le long des côtes de la Manche : fucus serratus et laminaria digitata. Radioprotection 34:13–24. https://doi.org/10.1051/radiopro:1999100

    Article  CAS  Google Scholar 

  26. Doshi GR, Joshi SN, Pillai KC (1991) 129I in soil and grass samples around a nuclear reprocessing plant. J Radioanal Nucl Chem Lett 155:115–127. https://doi.org/10.1007/BF02165065

    Article  CAS  Google Scholar 

  27. Fan Y, Hou X, Zhou W (2013) Progress on 129I analysis and its application in environmental and geological researches. Desalination 321:32–46. https://doi.org/10.1016/j.desal.2012.05.012

    Article  CAS  Google Scholar 

  28. Hou X, Wang Y (2016) Determination of ultra-low level 129I in vegetation using pyrolysis for iodine separation and accelerator mass spectrometry measurements. J Anal At Spectrom 31:1298–1310. https://doi.org/10.1039/C6JA00029K

    Article  CAS  Google Scholar 

  29. Hou X, Zhang D (2018) Determination of 129I in environmental solid samples using pyrolysis separation and accelerator mass spectrometry measurement. J Radioanal Nucl Chem 317:487–499. https://doi.org/10.1007/s10967-018-5859-4

    Article  CAS  Google Scholar 

  30. Raddec Pyrolyser-6 Trio. https://www.raddec.com/datasheets/Raddec%20Pyrolyser-Trio%20datasheet_02.pdf. Accessed 4 Dec 2019

  31. Hou X (2010) Radiochemical analysis of 41Ca, 90Sr, 129I and 36Cl in waste samples. Workshop on Radioanalytical Chemistry for Radioecology and Waste Management. Workshop Radioanal Chem Radioecol Waste Manag.

  32. Yiou F, Raisbeck G, Imbaud H (2004) Extraction and AMS measurement of carrier free 129I/127I from seawater. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At 223–224:412–415. https://doi.org/10.1016/j.nimb.2004.04.078

    Article  CAS  Google Scholar 

  33. Jabbar T, Steier P, Wallner G et al (2013) Investigation of the isotopic ratio 129I/I in petrified wood. J Environ Radioact 120:33–38. https://doi.org/10.1016/j.jenvrad.2012.12.010

    Article  CAS  PubMed  Google Scholar 

  34. Decamp C, Happel S (2013) Utilization of a mixed-bed column for the removal of iodine from radioactive process waste solutions. J Radioanal Nucl Chem 298:763–767. https://doi.org/10.1007/s10967-013-2503-1

    Article  CAS  Google Scholar 

  35. Zhang S, Schwehr KA, Ho Y-F et al (2010) A novel approach for the simultaneous determination of iodide, iodate and organo-iodide for 127I and 129I in environmental samples using gas chromatography−mass spectrometry. Environ Sci Technol 44:9042–9048. https://doi.org/10.1021/es102047y

    Article  CAS  PubMed  Google Scholar 

  36. Heumann KG, Gallus SM, Rädlinger G, Vogl J (1998) Accurate determination of element species by on-line coupling of chromatographic systems with ICP-MS using isotope dilution technique. Spectrochim Acta Part B At Spectrosc 53:273–287. https://doi.org/10.1016/S0584-8547(97)00134-1

    Article  Google Scholar 

  37. Wang K, Jiang S-J (2008) Determination of iodine and bromine compounds by ion chromatography/dynamic reaction cell inductively coupled plasma mass spectrometry. Anal Sci 24:509–514. https://doi.org/10.2116/analsci.24.509

    Article  PubMed  Google Scholar 

  38. BUCHI Scrubber K-415 Technical data sheet. https://assets.buchi.com/image/upload/v1605790969/pdf/Technical-Datasheet/TDS_11594153_Scrubber_K-415.pdf . Accessed 10 Jan 2022

  39. BUCHI SpeedDigester K-439 Technical data sheet. https://assets.buchi.com/image/upload/v1605790987/pdf/Technical-Datasheet/TDS_K-439.pdf . Accessed 10 Jan 2022

  40. Carrier C, Habibi A, Agarande M et al (2022) Correction: mass-shift mode to quantify low level 129I in environmental samples by ICP-MS/MS. J Anal At Spectrom. https://doi.org/10.1039/D2JA90054H

    Article  Google Scholar 

  41. Zulauf A, Happel S, Mokili MB et al (2010) Characterization of an extraction chromatographic resin for the separation and determination of 36Cl and 129I. J Radioanal Nucl Chem 286:539–546. https://doi.org/10.1007/s10967-010-0772-5

    Article  CAS  Google Scholar 

  42. Application Nucléide–Lara – Laboratoire National Henri Becquerel. http://www.lnhb.fr/donnees-nucleaires/module-lara/. Accessed 2 Dec 2019

  43. Ežerinskis Ž, Spolaor A, Kirchgeorg T et al (2014) Determination of 129I in Arctic snow by a novel analytical approach using IC-ICP-SFMS. J Anal At Spectrom 29:1827–1834. https://doi.org/10.1039/C4JA00179F

    Article  CAS  Google Scholar 

  44. Rucker T (2005) Methodologies for the practical determination and use of method detection limits. J Radioanal Nucl Chem 192:345–350. https://doi.org/10.1007/bf02041739

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Habibi.

Ethics declarations

Conflicts of interest

Authors have no conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrier, C., Habibi, A., Ferreux, L. et al. Determination of environmental gaseous 129I trapped in charcoal cartridges by ICP-MS/MS. J Radioanal Nucl Chem 332, 2003–2015 (2023). https://doi.org/10.1007/s10967-023-08845-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08845-0

Keywords

Navigation