Skip to main content
Log in

Zircon concentrate analysis for sixteen rare earth elements by the complex of nuclear analytical methods

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Two samples of zircon concentrate by local manufacturers were investigated for the first time for their rare earth elements (REE) content by instrumental neutron activation analysis (INAA) and energy dispersive X-ray fluorescence analysis. Comparator variant of INAA based on an external standard (Fe) and two internal standards (Th, La) was used to determine the elements divided into three groups depending on the detector type, radionuclide half-lives, and suitable comparator.

High Y and heavy REE contents of the samples exceeding their crustal averages up to two orders of magnitude confirmed significance of the zircon concentrate as an important source of these elements production as a by-product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dushyantha N, Batapola N, Ilankoon IMSK et al (2020) The story of rare earth elements (REEs): occurrences, global distribution, genesis, geology, mineralogy and global production. Ore Geol Rev. https://doi.org/10.1016/j.oregeorev.2020.103521

    Article  Google Scholar 

  2. Balaram V (2019) Rare earth elements—a review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geosci Front 10:1285–1303

    Article  CAS  Google Scholar 

  3. Zhou B, Li Z, Chen C (2017) Global potential of rare earth resources and rare earth demand from clean technologies. Minerals. https://doi.org/10.3390/min7110203

    Article  Google Scholar 

  4. Costis S, Mueller KK, Coudert L et al (2021) Recovery potential of rare earth elements from mining and industrial residues—a review and cases studies. J Geochem Explor. https://doi.org/10.1016/j.gexplo.2020.106699

    Article  Google Scholar 

  5. Zhang W, Noble A, Yang X et al (2020) A comprehensive review of rare earth elements recovery from coal-related materials. Minerals. https://doi.org/10.3390/min10050451

    Article  Google Scholar 

  6. Rychkov VN, Kirillov EV, Kirillov SV et al (2018) Recovery of rare earth elements from phosphogypsum. J Cleaner Prod 196:674–681

    Article  CAS  Google Scholar 

  7. Peiravi M, Dehghani F, Ackah L et al (2021) A review of rare-earth elements extraction with emphasis on non-conventional sources: Coal and coal byproducts, iron ore tailings, apatite, and phosphate byproducts. Min, Metall Explor 38(1):1–26

    Google Scholar 

  8. Alves FE, Neumann R, Ávila CA et al (2021) Mineralogical auditing of the volta grande mine (SE Brazil) Sn–Ta–Nb–Li processing plant, aiming at REE recovery as by-products. Appl Earth Sci 130:198–208

    Article  CAS  Google Scholar 

  9. Dehaine Q, Filippov LO, Joussemet R (2017) Rare earths (La, Ce, Nd) and rare metals (Sn, Nb, W) as by-products of kaolin production – Part 2: Gravity processing of micaceous residues. Miner Eng 100:200–210

    Article  CAS  Google Scholar 

  10. Paulick H, Machacek E (2017) The global rare earth element exploration boom: an analysis of resources outside of China and discussion of development perspectives. Resour Policy 52:134–153

    Article  Google Scholar 

  11. Makeyev AB, Skublov SG (2016) Y-REE-rich zircons of the Timan region: geochemistry and economic significance. Geochem Int 54(9):788–794

    Article  CAS  Google Scholar 

  12. Trisnawati I, Prameswara G, Mulyono P et al (2020) Sulfuric acid leaching of heavy rare earth elements (HREEs) from Indonesian zircon tailing. Int J Technol 11(4):804–816

    Article  Google Scholar 

  13. Handini T (2020) Separation the zircon mineral from tailing tin mining using shaking table. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/1436/1/012127

    Article  Google Scholar 

  14. Singh A, Padmasubashini V, Gopal L (2012) Determination of uranium, thorium and rare-earth elements in zircon samples using ICP-MS. J Radioanal Nucl Chem 294:19–25

    Article  CAS  Google Scholar 

  15. Krishnakumar M, Chakrapani G, Satyanarayana K et al (2016) Selective matrix removal and ICP-OES determination of trace uranium, rare earth elements and yttrium in zircon minerals. J Radioanal Nucl Chem 307:497–505

    Article  CAS  Google Scholar 

  16. Zhang J, Wang L, Jiang D (2012) Decomposition process of zircon sand concentrate with CaO–NaOH. Rare Met 31(4):410–414

    Article  CAS  Google Scholar 

  17. Thibault Y, Gamage McEvoy J, Duguay D (2020) Optimizing Zr and REE recovery from zircon through a better understanding of the mechanisms governing its decomposition in alkali media. In: Azimi G (ed) Rare metal technology. Springer, Cham

    Google Scholar 

  18. Zuma MC, Lakkakula J, Mketo N (2022) Recent trends in sample preparation methods and plasma-based spectrometric techniques for the determination of rare earth elements in geological and fossil fuel samples. Appl Spectrosc Rev 57:353–377

    Article  CAS  Google Scholar 

  19. Zhang W, Hu Z (2019) Recent advances in sample preparation methods for elemental and isotopic analysis of geological samples. Spectroch Acta, Part B. https://doi.org/10.1016/j.sab.2019.105690

    Article  Google Scholar 

  20. Tamura A, Akizawa N, Otsuka R et al (2015) Measurement of whole-rock trace-element composition by flux-free fused glass and LA-ICP-MS: evaluation of simple and rapid routine work. Geochem J 49:243–258

    Article  CAS  Google Scholar 

  21. Lin J, Liu Y, Yang Y et al (2016) Calibration and correction of LA-ICP-MS and LA-MC-ICP-MS analyses for element contents and isotopic ratios. Solid Earth Sci 1:5–27

    Article  Google Scholar 

  22. Karivai A, Zuzaan P, Gustova V (2011) A method for the determination of some rare earth elements and their correlation with thorium using X-ray fluorescence. Phys Part Nucl Lett 6(8):576–580

    Article  Google Scholar 

  23. Siyanbola WO, Fasasi AY, Funtua II et al (2005) Energy dispersive X-ray fluorescence analysis of samples of the Nigerian zircons. Nucl Instrum Methods Phys Res, Sect B 239:426–432

    Article  CAS  Google Scholar 

  24. Schramm R (2016) Use of X-ray fluorescence analysis for the determination of rare earth elements. Phys Sci Rev. https://doi.org/10.1515/psr-2016-0061

    Article  Google Scholar 

  25. Smoliński A, Stempin M, Howaniec N (2016) Determination of rare earth elements in combustion ashes from selected Polish coal mines by wavelength dispersive X-ray fluorescence spectrometry. Spectroch Acta, Part B 116:63–74

    Article  Google Scholar 

  26. Stosch H-G (2016) Neutron activation analysis of the rare earth elements (REE) – with emphasis on geological materials. Phys Sci Rev. https://doi.org/10.1515/psr-2016-0062

    Article  Google Scholar 

  27. Attallah MF, Hilal MA, Moussa SI (2017) Quantification of some elements of nuclear and industrial interest from zircon mineral using neutron activation analysis and passive gamma-ray spectroscopy. Appl Radiat Isot 128:224–230

    Article  CAS  PubMed  Google Scholar 

  28. Silachyov IYu (2020) Neutron activation analysis of rare earth raw material using a planar detector and thorium as an internal standard. Int J Biol Chem 13:117–129

    Google Scholar 

  29. Silachyov I (2016) Rare earths analysis of rock samples by instrumental neutron activation analysis, internal standard method. J Radioanal Nucl Chem 310:573–582

    Article  CAS  Google Scholar 

  30. K0-Neutron activation analysis link page. The NDC k0-databaze 2019. http://www.kayzero.com/k0naa/k0naaorg/Links.html. Accessed 15 Feb 2023

  31. Simonov YA, Kritskii AA, Tomashov VA et al (2009) Study of the process of MgO regeneration from products of its sintering with zircon. Russ J Non-ferrous Metals 50(5):457–460

    Article  Google Scholar 

  32. Koltochnik SN, Sairanbayev DS, Chekushina LV et al (2018) Comparison of neutron spectrum in the WWR-K reactor with LEU fuel against HEU one. NNC RK Bulletin 76(4):14–17 ((in Russian))

    Google Scholar 

  33. Silachyov IYu (2021) Determination of indium in its ore resources by comparator neutron activation analysis. Int J Biol Chem 14:106–116

    Article  CAS  Google Scholar 

  34. Silachyov I (2020) Elemental analysis of vegetation samples by INAA internal standard method. J Radioanal Nucl Chem 324:97–108

    Article  CAS  Google Scholar 

  35. Hamidatou L, Slamene H, Akhal T, Zouranen B (2013) Concepts, instrumentation and techniques of neutron activation analysis. In: Kharfi F (ed) Imaging and radioanalytical techniques in interdisciplinary research – fundamentals and cutting edge applications. InTech, Rijeka Croatia

    Google Scholar 

  36. Shirai N, Hidaka Y, Yamaguchi A et al (2015) Neutron activation analysis of iron meteorites. J Radioanal Nucl Chem 303:1375–1380

    Article  CAS  Google Scholar 

  37. Diaz O, Figueiredo A, Nogueira C et al (2005) Epithermal neutron flux characterization of the IEA-R1 research reactor, Sao Paulo, Brazil. J Radioanal Nucl Chem 266:153–157

    Article  CAS  Google Scholar 

  38. ISO 13528:2022 (2022) Statistical methods for use in proficiency testing by interlaboratory comparisons. International organization for standardization, Genève, Switzerland

    Google Scholar 

  39. Gusev S, Ryabev V, Vorobyov V et al (2004) OST 41–08–212–04 Industrial standard quality management of analytical work. Error guidelines for chemical analysis of mineral resources and precision classification of laboratory analytical techniques. Published by FSMC VIMS, Moscow ((in Russian))

    Google Scholar 

  40. Silachyov IYu (2018) Determination of rare earths in uranium raw material by neutron activation analysis and X-ray fluorescence. News Acad Sci RK, Ser Chem Technol 429(3):28–38

    Google Scholar 

  41. Rudnick RL, Gao S (2014) Composition of the continental crust. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 4, 2nd edn. Elsevier, College Park

    Google Scholar 

Download references

Acknowledgements

This work was supported by the grant № BR05236400 from Ministry of Education and Sciences of the Republic of Kazakhstan.

Funding

Ministry of Education and Science of the Republic of Kazakhstan, BR05236400.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Silachyov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silachyov, I. Zircon concentrate analysis for sixteen rare earth elements by the complex of nuclear analytical methods. J Radioanal Nucl Chem 332, 2017–2026 (2023). https://doi.org/10.1007/s10967-023-08844-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08844-1

Keywords

Navigation