Skip to main content
Log in

Bidirectional effects of sulfur-oxidizer Acidithiobacillus thiooxidans in uranium bioleaching systems with or without sulfur by mixed acidophilic bacteria

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The various effects of Acidithiobacillus thiooxidans (A. thiooxidans) on uranium bioleaching by mixed acidophilic bacteria was explored in the presence of ferrous substrates with or without sulfur. The results showed that the sulfur-oxidizer A. thiooxidans in the mixed bacteria played a positive role on acid production, iron oxidative rate, uranium extraction and ore permeability in the ferrous substrate with sulfur, while it played an inhibiting role in the substrate without sulfur. It showed that the sulfur-oxidizer A. thiooxidans played bidirectional effects in the uranium bioleaching process in the presence of ferrous substrates with or without sulfur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pioro I, Duffey R (2015) Nuclear power as a basis for future electricity generation. ASME J Nuclear Rad Sci 1(1):011001

    Article  Google Scholar 

  2. Nicholson M, Biegler T, Brook BW (2011) How carbon pricing changes the relative competitiveness of low-carbon baseload generating technologies. Energy 36:305–313

    Article  Google Scholar 

  3. Grancea L, Mihalasky MJ, Fairclough M (2020) Uranium 2020: resources, production and demand. Nuclear Energy Agency.

  4. Mudd GM (2014) The future of yellowcake: a global assessment of uranium resources and mining. Sci Total Environ 472:590–607

    Article  CAS  PubMed  Google Scholar 

  5. Kaksonen AH, Lakaniemi AM, Tuovinen OH (2020) Acid and ferric sulfate bioleaching of uranium ores: a review. J Clean Prod 264:121586

    Article  CAS  Google Scholar 

  6. Kaksonen AH, Boxall NJ, Gumulya Y, Khaleque HN, Morris C, Bohu T, Cheng KY, Lakaniemi AM (2018) Recent progress in biohydrometallurgy and microbial characterisation. Hydrometallurgy 180:7–25

    Article  CAS  Google Scholar 

  7. Rohwerder T, Gehrke T, Kinzler K (2003) Bioleaching review part A: Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl Microbiol Biotechnol 63(3):239–248

    Article  CAS  PubMed  Google Scholar 

  8. Watling HR (2006) The bioleaching of sulphide minerals with emphasis on copper sulphides—a review. Hydrometallurgy 84(1/2):81–108

    Article  CAS  Google Scholar 

  9. Brierley JA, Brierley CL (2001) Present and future commercial applications of biohydrometallurgy. Hydrometallurgy 59(2/3):233–239

    Article  CAS  Google Scholar 

  10. Qiu G, Li Q, Yu R, Sun Z, Liu Y, Chen M, Yin H, Zhang Y, Liang Y, Xu L, Sun L, Liu X (2011) Column bioleaching of uranium embedded in granite porphyry by a mesophilic acidophilic consortium. Bioresour Technol 102(7):4697–4702

    Article  CAS  PubMed  Google Scholar 

  11. Tuovinen OH, Hsu JC (1984) Effect of pH, iron concentration, and pulp density on the solubilization of uranium from ore material in chemical and microbiological acid leach solutions: regression equation and confidence band analysis. Hydrometallurgy 12(2):141–149

    Article  CAS  Google Scholar 

  12. Srichandan H, Mohapatra RK, Singh PK, Mishra S, Parhi PK, Naik K (2020) Column bioleaching applications, process development, mechanism, parametric effect and modelling: a review. J Ind Egn Chem 90:1–16

    CAS  Google Scholar 

  13. Wang X, Sun Z, Liu Y, Min X, Guo Y, Li P, Zheng Z (2019) Effect of particle size on uranium bioleaching in column reactors from a lowgrade uranium ore. Bioresour Technol 281:66–71

    Article  CAS  PubMed  Google Scholar 

  14. Li Q, Sun J, Ding D, Wang Q, Shi W, Hu E, Wang X, Jiang X (2017) Characterization and uranium bioleaching performance of mixed iron- and sulfur-oxidizers versus iron-oxidizers. J Radioanal Nucl Chem 314:1939–1946

    Article  CAS  Google Scholar 

  15. Brune KD, Bayer TS (2012) Engineering microbial consortia to enhance biomining and bioremediation. Front Microbiol 3:203

    Article  PubMed  PubMed Central  Google Scholar 

  16. Remonsellez F, Galleguillos F, Moreno-Paz M, Parro V, Acosta M, Demergasso C (2009) Dynamic of active microorganisms inhabiting a bioleaching industrial heap of low-grade copper sulfide ore monitored by real-time PCR and oligonucleotide prokaryotic acidophile microarray. Microb Biotechnol 2(6):613–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yin Z, Feng S, Tong Y, Yang H (2019) Adaptive mechanism of Acidithiobacillus thiooxidans CCTCC M 2012104 under stress during bioleaching of low-grade chalcopyrite based on physiological and comparative transcriptomic analysis. J Ind Microbiol Biot 46(12):1643–1656

    Article  CAS  Google Scholar 

  18. Yang Y, Zhu Z, Hu T, Zhang M, Qiu G (2021) Variation in energy metabolism structure of microbial community during bioleaching chalcopyrites with different iron-sulfur ratios. J Cent South Univ 28:2022–2036

    Article  CAS  Google Scholar 

  19. Sun J, Ma J, Li Q, Li G, Shi W, Yang Y, Hu P, Guo Z (2022) Role of the Fe/S ratios in the enhancement of uranium bioleaching from a complex uranium ore by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans consortium. J Cent South Univ 29(12):3858–3869

    Article  CAS  Google Scholar 

  20. Li Q, Yang Y, Ma J, Sun J, Li G, Zhang R, Cui Z, Li T, Liu X (2023) Sulfur enhancement effects for uranium bioleaching in column reactors from a refractory uranium ore. Front Microbiol 14:1107649

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bewilaqua D, Leite ALLC, Garcia O (2002) Oxidation of Chalcopyrite by Acidithiobacillus ferriooxidans and Acidithiobacillus thiooxidans in Shake Flasks. Process Biochem 38(4–2):587–592

    Article  Google Scholar 

  22. Pogliani C, Fetsis P, Donati E (2005) Bioleaching of copper sulphide ore by pure and mixed cultures of mesophilic bacteria. Hydrometallurgy 87(3/4):275–281

    Google Scholar 

  23. Gargarello RM, Gregorio DD, Huck H (2010) Reduction of uranium(VI) by Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans. Hydrometallurgy 71:641–644

    Google Scholar 

  24. Sun J, Li G, Li Q, Wang Y, Ma J, Pang C, Ma J (2020) Impacts of operational parameters on the morphological structure and uranium bioleaching performance of bio-ore pellets in one-step bioleaching by Aspergillus niger. Hydrometallurgy 195:105378

    Article  CAS  Google Scholar 

  25. He J, Cai Z, Zhang Y (2019) Effects of energy source on bioleaching of vanadium-bearing shale by Acidithiobacillus ferrooxidans. Biochem Eng J 151:107–355

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported and funded by the National Natural Science Foundation of China (No. 51804165) and the Foundation of Education Bureau of Hunan Province, China (No. 22B0438).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Li.

Ethics declarations

Conflict of interest

All authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Liu, X., Ma, J. et al. Bidirectional effects of sulfur-oxidizer Acidithiobacillus thiooxidans in uranium bioleaching systems with or without sulfur by mixed acidophilic bacteria. J Radioanal Nucl Chem 332, 1787–1794 (2023). https://doi.org/10.1007/s10967-023-08841-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08841-4

Keywords

Navigation