Skip to main content
Log in

Magnetic biochar modified with crosslinked chitosan and EDTA for removing cobalt from aqueous solutions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

To effectively remove cobalt, magnetic biochar was modified with chitosan and ethylenediaminetetraacetic acid (CMBC–EDTA), and its properties were examined through surface area and pore size analysis, scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction analysis, and vibration sample magnetometry. Moreover, according to the Langmuir isotherm model, the maximum capacity of CMBC–EDTA reached 0.7311 mol·kg−1. Over 50% of 50 ppm Co2+ was removed within 20 min, and the adsorption equilibrium was reached after 2 h. At pH 3–7, the 20 ppm Co2+ removal efficiency was more than 90%, and it decreased rapidly below pH 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Hawkins M (2001) Why we need cobalt. Appl Earth Sci 110:66–70. https://doi.org/10.1179/aes.2001.110.2.66

    Article  Google Scholar 

  2. Schirrmacher UO (1967) Case of cobalt poisoning. Br Med J 1:544–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kamiya K, Ozasa K, Akiba S, Niwa O, Kodama K, Takamura N, Zaharieva EK, Kimura Y, Wakeford R (2015) Long-term effects of radiation exposure on health. Lancet 386:469–478. https://doi.org/10.1016/S0140-6736(15)61167-9

    Article  CAS  PubMed  Google Scholar 

  4. Mendes FD, Martins AH (2004) Selective sorption of nickel and cobalt from sulphate solutions using chelating resins. Int J Miner Process 74:359–371. https://doi.org/10.1016/j.minpro.2004.04.003

    Article  CAS  Google Scholar 

  5. Al-Shahrani H, Alakhras F, Al-Abbad E, Al-Mazaideh G, Hosseini-Bandegharaei A, Ouerfelli N (2018) Sorption of cobalt (II) ions from aqueous solutions using chemically modified chitosan. Global NEST J 20:620–627. https://doi.org/10.30955/gnj.002804

    Article  CAS  Google Scholar 

  6. Jia F, Yin Y, Wang J (2018) Removal of cobalt ions from simulated radioactive wastewater by vacuum membrane distillation. Prog Nucl Energy 103:20–27. https://doi.org/10.1016/j.pnucene.2017.11.008

    Article  CAS  Google Scholar 

  7. Kim H-J, Baek K, Kim B-K, Yang J-W (2005) Humic substance-enhanced ultrafiltration for removal of cobalt. J Hazard Mater 122:31–36. https://doi.org/10.1016/j.jhazmat.2005.03.043

    Article  CAS  PubMed  Google Scholar 

  8. Assaad E, Azzouz A, Nistor D, Ursu AV, Sajin T, Miron DN, Monette F, Niquette P, Hausler R (2007) Metal removal through synergic coagulation–flocculation using an optimized chitosan–montmorillonite system. Appl Clay Sci 37:258–274. https://doi.org/10.1016/j.clay.2007.02.007

    Article  CAS  Google Scholar 

  9. Anbari RHA, Albaidani J, Alfatlawi SM, Al-Hamdani TA (2008) Removal of heavy metals from industrial water using electro-coagulation technique

  10. Quiton KGN, Huang Y-H, Lu M-C (2022) Recovery of cobalt and copper from single- and co-contaminated simulated electroplating wastewater via carbonate and hydroxide precipitation. Sustain Environ Res 32:31. https://doi.org/10.1186/s42834-022-00140-z

    Article  CAS  Google Scholar 

  11. Becker FL, Rodríguez D, Schwab M (2012) Magnetic removal of cobalt from waste water by ferrite co-precipitation. Procedia Mater Sci 1:644–650. https://doi.org/10.1016/j.mspro.2012.06.087

    Article  CAS  Google Scholar 

  12. Kim JS, Keane MA (2002) The removal of iron and cobalt from aqueous solutions by ion exchange with Na-Y zeolite: batch, semi-batch and continuous operation. J Chem Technol Biotechnol 77:633–640. https://doi.org/10.1002/jctb.618

    Article  CAS  Google Scholar 

  13. Abd El-Latif MM, Elkady MF (2011) Kinetics study and thermodynamic behavior for removing cesium, cobalt and nickel ions from aqueous solution using nano-zirconium vanadate ion exchanger. Desalination 271:41–54. https://doi.org/10.1016/j.desal.2010.12.004

    Article  CAS  Google Scholar 

  14. Saad DR, Alismaeel ZT, Abbar AH (2020) Cobalt removal from simulated wastewaters using a novel flow-by fixed bed bio-electrochemical reactor. Chem Eng Process Process Intensif 156:108097. https://doi.org/10.1016/j.cep.2020.108097

    Article  CAS  Google Scholar 

  15. Adiloglu S, Duban S. (2022) Removal of Cobalt, Nickel, Cadmium, and Lead from Wastewater by Phytoremediation. In: Kumar V, Thakur IS (eds) Omics Insights in Environmental Bioremediation. Springer Nature, Singapore, pp 273–300

  16. Islam MdA, Morton DW, Johnson BB, Pramanik BK, Mainali B, Angove MJ (2018) Opportunities and constraints of using the innovative adsorbents for the removal of cobalt(II) from wastewater: a review. Environ Nanotechnol Monitor Manage 10:435–456. https://doi.org/10.1016/j.enmm.2018.10.003

    Article  Google Scholar 

  17. Sud D, Mahajan G, Kaur MP (2008) Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions – a review. Biores Technol 99:6017–6027. https://doi.org/10.1016/j.biortech.2007.11.064

    Article  CAS  Google Scholar 

  18. Liu Y, Lonappan L, Brar SK, Yang S (2018) Impact of biochar amendment in agricultural soils on the sorption, desorption, and degradation of pesticides: a review. Sci Total Environ 645:60–70. https://doi.org/10.1016/j.scitotenv.2018.07.099

    Article  CAS  PubMed  Google Scholar 

  19. Wei D, Li B, Huang H, Luo L, Zhang J, Yang Y, Guo J, Tang L, Zeng G, Zhou Y (2018) Biochar-based functional materials in the purification of agricultural wastewater: fabrication, application and future research needs. Chemosphere 197:165–180. https://doi.org/10.1016/j.chemosphere.2017.12.193

    Article  CAS  PubMed  Google Scholar 

  20. Qiu B, Tao X, Wang H, Li W, Ding X, Chu H (2021) Biochar as a low-cost adsorbent for aqueous heavy metal removal: a review. J Anal Appl Pyrolysis 155:105081. https://doi.org/10.1016/j.jaap.2021.105081

    Article  CAS  Google Scholar 

  21. Kasera N, Kolar P, Hall SG (2022) Nitrogen-doped biochars as adsorbents for mitigation of heavy metals and organics from water: a review. Biochar 4:17. https://doi.org/10.1007/s42773-022-00145-2

    Article  CAS  Google Scholar 

  22. Jeyasubramanian K, Thangagiri B, Sakthivel A, Dhaveethu Raja J, Seenivasan S, Vallinayagam P, Madhavan D, Malathi Devi S, Rathika B (2021) A complete review on biochar: production, property, multifaceted applications, interaction mechanism and computational approach. Fuel 292:120243. https://doi.org/10.1016/j.fuel.2021.120243

    Article  CAS  Google Scholar 

  23. Das S, Avasthe R, Singh R, Babu S (2014) Biochar as carbon negative in carbon credit under changing climate. Curr Sci 107:1090–1091

    Google Scholar 

  24. Yan L, Kong L, Qu Z, Li L, Shen G (2015) Magnetic biochar decorated with ZnS nanocrytals for Pb (II) removal. ACS Sustain Chem Eng 3:125–132. https://doi.org/10.1021/sc500619r

    Article  CAS  Google Scholar 

  25. Yin Z, Xu S, Liu S, Xu S, Li J, Zhang Y (2020) A novel magnetic biochar prepared by K2FeO4-promoted oxidative pyrolysis of pomelo peel for adsorption of hexavalent chromium. Bioresour Technol 300:122680. https://doi.org/10.1016/j.biortech.2019.122680

    Article  CAS  PubMed  Google Scholar 

  26. Huang D, Zhang Q, Zhang C, Wang R, Deng R, Luo H, Li T, Li J, Chen S, Liu C (2020) Mn doped magnetic biochar as persulfate activator for the degradation of tetracycline. Chem Eng J 391:123532. https://doi.org/10.1016/j.cej.2019.123532

    Article  CAS  Google Scholar 

  27. Gómez-Pastora J, Bringas E, Ortiz I (2014) Recent progress and future challenges on the use of high performance magnetic nano-adsorbents in environmental applications. Chem Eng J 256:187–204. https://doi.org/10.1016/j.cej.2014.06.119

    Article  CAS  Google Scholar 

  28. Ravi Kumar MNV (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27. https://doi.org/10.1016/S1381-5148(00)00038-9

    Article  Google Scholar 

  29. Mjad ZM (2005) Advances in chitin and chitosan modification through graft copolymerization. 14:235–265

  30. Wei YC, Hudson SM, Mayer JM, Kaplan DL (1992) The crosslinking of chitosan fibers. J Polym Sci A Polym Chem 30:2187–2193. https://doi.org/10.1002/pola.1992.080301013

    Article  CAS  Google Scholar 

  31. Berger J, Reist M, Mayer JM, Felt O, Peppas NA, Gurny R (2004) Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm 57:19–34. https://doi.org/10.1016/S0939-6411(03)00161-9

    Article  CAS  PubMed  Google Scholar 

  32. Saheed IO, Oh WD, Suah FBM (2021) Chitosan modifications for adsorption of pollutants—a review. J Hazardous Mater 408:124889. https://doi.org/10.1016/j.jhazmat.2020.124889

    Article  CAS  Google Scholar 

  33. Zhang M, Liu Y, Li T, Xu W, Zheng B, Tan X, Wang H, Guo Y, Guo F, Wang S (2015) Chitosan modification of magnetic biochar produced from Eichhornia crassipes for enhanced sorption of Cr( vi ) from aqueous solution. RSC Adv 5:46955–46964. https://doi.org/10.1039/C5RA02388B

    Article  CAS  Google Scholar 

  34. Ezzeddine Z, Batonneau-Gener I, Pouilloux Y, Hamad H, Saad Z, Kazpard V (2015) Divalent heavy metals adsorption onto different types of EDTA-modified mesoporous materials: Effectiveness and complexation rate. Microporous Mesoporous Mater 212:125–136. https://doi.org/10.1016/j.micromeso.2015.03.013

    Article  CAS  Google Scholar 

  35. Abbas M, Kaddour S, Trari M (2014) Kinetic and equilibrium studies of cobalt adsorption on apricot stone activated carbon. J Ind Eng Chem 20:745–751. https://doi.org/10.1016/j.jiec.2013.06.030

    Article  CAS  Google Scholar 

  36. Mohammadi SZ, Darijani Z, Karimi MA (2020) Fast and efficient removal of phenol by magnetic activated carbon-cobalt nanoparticles. J Alloys Compounds 832:154942. https://doi.org/10.1016/j.jallcom.2020.154942

    Article  CAS  Google Scholar 

  37. Fang F, Kong L, Huang J, Wu S, Zhang K, Wang X, Sun B, Jin Z, Wang J, Huang X-J, Liu J (2014) Removal of cobalt ions from aqueous solution by an amination graphene oxide nanocomposite. J Hazard Mater 270:1–10. https://doi.org/10.1016/j.jhazmat.2014.01.031

    Article  CAS  PubMed  Google Scholar 

  38. Song W, Hu J, Zhao Y, Shao D, Li J (2013) Efficient removal of cobalt from aqueous solution using β-cyclodextrin modified graphene oxide. RSC Adv 3:9514–9521. https://doi.org/10.1039/C3RA41434E

    Article  CAS  Google Scholar 

  39. Wang Q, Li J, Chen C, Ren X, Hu J, Wang X (2011) Removal of cobalt from aqueous solution by magnetic multiwalled carbon nanotube/iron oxide composites. Chem Eng J 174:126–133. https://doi.org/10.1016/j.cej.2011.08.059

    Article  CAS  Google Scholar 

  40. Park Y, Shin W, Choi S-J (2011) Sorptive removal of cobalt, strontium and cesium onto manganese and iron oxide-coated montmorillonite from groundwater. J Radioanal Nucl Chem 292:837–852. https://doi.org/10.1007/s10967-011-1527-7

    Article  CAS  Google Scholar 

  41. Zhang L, Wei J, Zhao X, Li F, Jiang F, Zhang M, Cheng X (2016) Removal of strontium(II) and cobalt(II) from acidic solution by manganese antimonate. Chem Eng J 302:733–743. https://doi.org/10.1016/j.cej.2016.05.040

    Article  CAS  Google Scholar 

  42. Al Abdullah J, Al Lafi AG, Al Masri W, Amin Y, Alnama T (2016) Adsorption of cesium, cobalt, and lead onto a synthetic nano manganese oxide: behavior and mechanism. Water Air Soil Pollut 227:241. https://doi.org/10.1007/s11270-016-2938-4

    Article  CAS  Google Scholar 

  43. Triantafyllou S, Christodoulou E, Neou-Syngouna P (1999) Removal of nickel and cobalt from aqueous solutions by Na-activated bentonite. Clays Clay Miner 47:567–572. https://doi.org/10.1346/CCMN.1999.0470503

    Article  CAS  Google Scholar 

  44. Manohar DM, Noeline BF, Anirudhan TS (2006) Adsorption performance of Al-pillared bentonite clay for the removal of cobalt(II) from aqueous phase. Appl Clay Sci 31:194–206. https://doi.org/10.1016/j.clay.2005.08.008

    Article  CAS  Google Scholar 

  45. Taka AL, Fosso-Kankeu E, Pillay K, Mbianda XY (2018) Removal of cobalt and lead ions from wastewater samples using an insoluble nanosponge biopolymer composite: adsorption isotherm, kinetic, thermodynamic, and regeneration studies. Environ Sci Pollut Res 25:21752–21767. https://doi.org/10.1007/s11356-018-2055-6

    Article  CAS  Google Scholar 

  46. Zhu T, Tan S, Tong L, Wang Y, Wang R (2011) Characterization of a novel biopolymer by FT-IR spectroscopy and its use for cobalt removal. In: 2011 third international conference on measuring technology and mechatronics automation. pp 700–703

  47. Vilvanathan S, Shanthakumar S (2017) Column adsorption studies on nickel and cobalt removal from aqueous solution using native and biochar form of Tectona grandis. Environ Prog Sustain Energy 36:1030–1038. https://doi.org/10.1002/ep.12567

    Article  CAS  Google Scholar 

  48. Qasim HM, Abudi ZN, Alzubaidi LA (2022) Cobalt ion removal using magnetic biochar obtained from conocarpus erectus leaves. Biomass Conv Bioref. https://doi.org/10.1007/s13399-022-02307-5

    Article  Google Scholar 

  49. Lim Y, Kim B, Jang J, Lee DS (2022) Buckwheat hull-derived biochar immobilized in alginate beads for the adsorptive removal of cobalt from aqueous solutions. J Hazardous Mater 436:129245. https://doi.org/10.1016/j.jhazmat.2022.129245

    Article  CAS  Google Scholar 

  50. Shin J, Kwak J, Lee Y-G, Kim S, Son C, Cho KH, Lee S-H, Park Y, Ren X, Chon K (2021) Changes in adsorption mechanisms of radioactive barium, cobalt, and strontium ions using spent coffee waste biochars via alkaline chemical activation: Enrichment effects of O-containing functional groups. Environ Res 199:111346. https://doi.org/10.1016/j.envres.2021.111346

    Article  CAS  PubMed  Google Scholar 

  51. Jiang J, Peng Y, Yuan M, Hong Z, Wang D, Xu R (2015) Rice straw-derived biochar properties and functions as Cu(II) and cyromazine sorbents as influenced by pyrolysis temperature. Pedosphere 25:781–789. https://doi.org/10.1016/S1002-0160(15)30059-X

    Article  CAS  Google Scholar 

  52. Panwar NL, Pawar A (2022) Influence of activation conditions on the physicochemical properties of activated biochar: a review. Biomass Conv Bioref 12:925–947. https://doi.org/10.1007/s13399-020-00870-3

    Article  CAS  Google Scholar 

  53. Yi Y, Huang Z, Lu B, Xian J, Tsang EP, Cheng W, Fang J, Fang Z (2020) Magnetic biochar for environmental remediation: a review. Bioresour Technol 298:122468. https://doi.org/10.1016/j.biortech.2019.122468

    Article  CAS  PubMed  Google Scholar 

  54. Zhao F, Repo E, Yin D, Sillanpää MET (2013) Adsorption of Cd(II) and Pb(II) by a novel EGTA-modified chitosan material: Kinetics and isotherms. J Colloid Interface Sci 409:174–182. https://doi.org/10.1016/j.jcis.2013.07.062

    Article  CAS  PubMed  Google Scholar 

  55. Weber K, Quicker P (2018) Properties of biochar. Fuel 217:240–261. https://doi.org/10.1016/j.fuel.2017.12.054

    Article  CAS  Google Scholar 

  56. Leng L, Huang H, Li H, Li J, Zhou W (2019) Biochar stability assessment methods: a review. Sci Total Environ 647:210–222. https://doi.org/10.1016/j.scitotenv.2018.07.402

    Article  CAS  PubMed  Google Scholar 

  57. Ahmed MB, Zhou JL, Ngo HH, Guo W (2016) Insight into biochar properties and its cost analysis. Biomass Bioenerg 84:76–86. https://doi.org/10.1016/j.biombioe.2015.11.002

    Article  CAS  Google Scholar 

  58. Xu X, Wu Y, Wu X, Sun Y, Huang Z, Li H, Wu Z, Zhang X, Qin X, Zhang Y, Deng J, Huang J (2022) Effect of physicochemical properties of biochar from different feedstock on remediation of heavy metal contaminated soil in mining area. Surfaces Interfaces 32:102058. https://doi.org/10.1016/j.surfin.2022.102058

    Article  CAS  Google Scholar 

  59. Chen B, Chen Z, Lv S (2011) A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Biores Technol 102:716–723. https://doi.org/10.1016/j.biortech.2010.08.067

    Article  CAS  Google Scholar 

  60. Queiroz M, Melo K, Sabry D, Sassaki G, Rocha H (2014) Does the use of chitosan contribute to oxalate kidney stone formation? Mar Drugs 13:141–158. https://doi.org/10.3390/md13010141

    Article  CAS  PubMed Central  Google Scholar 

  61. Lawrie G, Keen I, Drew B, Chandler-Temple A, Rintoul L, Fredericks P, Grøndahl L (2007) Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS. Biomacromol 8:2533–2541. https://doi.org/10.1021/bm070014y

    Article  CAS  Google Scholar 

  62. Ren Y, Abbood HA, He F, Peng H, Huang K (2013) Magnetic EDTA-modified chitosan/SiO2/Fe3O4 adsorbent: preparation, characterization, and application in heavy metal adsorption. Chem Eng J 226:300–311. https://doi.org/10.1016/j.cej.2013.04.059

    Article  CAS  Google Scholar 

  63. Qin R, Li F, Chen M, Jiang W (2009) Preparation of chitosan–ethylenediaminetetraacetate-enwrapped magnetic CoFe2O4 nanoparticles via zero-length emulsion crosslinking method. Appl Surf Sci 256:27–32. https://doi.org/10.1016/j.apsusc.2009.07.032

    Article  CAS  Google Scholar 

  64. Tan Z, Peng H, Liu H, Wang L, Chen J, Lu X (2015) Facile preparation of EDTA-functionalized chitosan magnetic adsorbent for removal of Pb(II). J Appl Polymer Sci. https://doi.org/10.1002/app.42384

    Article  Google Scholar 

  65. Lim S-F, Zheng Y-M, Zou S-W, Chen JP (2008) Characterization of copper adsorption onto an alginate encapsulated magnetic sorbent by a combined FT-IR, XPS, and mathematical modeling study. Environ Sci Technol 42:2551–2556. https://doi.org/10.1021/es7021889

    Article  CAS  PubMed  Google Scholar 

  66. Ma W, Ya F-Q, Han M, Wang R (2007) Characteristics of equilibrium, kinetics studies for adsorption of fluoride on magnetic-chitosan particle. J Hazard Mater 143:296–302. https://doi.org/10.1016/j.jhazmat.2006.09.032

    Article  CAS  PubMed  Google Scholar 

  67. Atia AA, Donia AM, Al-Amrani WA (2009) Adsorption/desorption behavior of acid orange 10 on magnetic silica modified with amine groups. Chem Eng J 150:55–62. https://doi.org/10.1016/j.cej.2008.12.004

    Article  CAS  Google Scholar 

  68. Zhou S, Zheng X, Yu X, Wang J, Weng J, Li X, Feng B, Yin M (2007) Hydrogen bonding interaction of Poly(d, l-Lactide)/hydroxyapatite nanocomposites. Chem Mater 19:247–253. https://doi.org/10.1021/cm0619398

    Article  CAS  Google Scholar 

  69. Graf N, Yegen E, Gross T, Lippitz A, Weigel W, Krakert S, Terfort A, Unger WES (2009) XPS and NEXAFS studies of aliphatic and aromatic amine species on functionalized surfaces. Surf Sci 603:2849–2860. https://doi.org/10.1016/j.susc.2009.07.029

    Article  CAS  Google Scholar 

  70. Moradi P, Hajjami M (2022) Stabilization of ruthenium on biochar-nickel magnetic nanoparticles as a heterogeneous, practical, selective, and reusable nanocatalyst for the Suzuki C-C coupling reaction in water. RSC Adv 12:13523–13534. https://doi.org/10.1039/D1RA09350A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Khalil TE, Elhusseiny AF, Ibrahim NM, El-dissouky A (2021) Unexpected effect of magnetic nanoparticles on the performance of aqueous removal of toxic Cr(VI) using modified biopolymer chitosan. Int J Biol Macromol 170:768–779. https://doi.org/10.1016/j.ijbiomac.2020.12.188

    Article  CAS  PubMed  Google Scholar 

  72. Abdollahi B, Salari D, Zarei M (2022) Synthesis and characterization of magnetic Fe3O4@SiO2-MIL-53(Fe) metal-organic framework and its application for efficient removal of arsenate from surface and groundwater. J Environ Chem Eng 10:107144. https://doi.org/10.1016/j.jece.2022.107144

    Article  CAS  Google Scholar 

  73. Langmuir I (1916) the constitution and fundamental properties of solids and liquids. Part I. Solids. J Am Chem Soc 38(11):2221–2295

    Article  CAS  Google Scholar 

  74. Freundlich H (1906) Over the adsorption in solution 57:1100–1107

    Google Scholar 

  75. Dada O, Olalekan A, Olatunya A, Dada AO (2012) Langmuir, freundlich, temkin and dubinin-radushkevich isotherms studies of equilibrium sorption of Zn 2+ Unto phosphoric acid modified rice husk. J Appl Chem 3:38–45. https://doi.org/10.9790/5736-0313845

    Article  CAS  Google Scholar 

  76. Xu M, Zhang Y, Zhang Z, Shen Y, Zhao M, Pan G (2011) Study on the adsorption of Ca2+, Cd2+ and Pb2+ by magnetic Fe3O4 yeast treated with EDTA dianhydride. Chem Eng J 168:737–745. https://doi.org/10.1016/j.cej.2011.01.069

    Article  CAS  Google Scholar 

  77. Thommes M, Cychosz KA (2014) Physical adsorption characterization of nanoporous materials: progress and challenges. Adsorption 20:233–250. https://doi.org/10.1007/s10450-014-9606-z

    Article  CAS  Google Scholar 

  78. Şenol ZM (2021) A chitosan-based composite for adsorption of uranyl ions; mechanism, isothems, kinetics and thermodynamics. Int J Biol Macromol 183:1640–1648. https://doi.org/10.1016/j.ijbiomac.2021.05.130

    Article  CAS  PubMed  Google Scholar 

  79. Lin J, Wang L (2009) Comparison between linear and non-linear forms of pseudo-first-order and pseudo-second-order adsorption kinetic models for the removal of methylene blue by activated carbon. Front Environ Sci Eng China 3:320–324. https://doi.org/10.1007/s11783-009-0030-7

    Article  CAS  Google Scholar 

  80. Zhang K, Dai Z, Zhang W, Gao Q, Dai Y, Xia F, Zhang X (2021) EDTA-based adsorbents for the removal of metal ions in wastewater. Coordinat Chem Rev 434:213809. https://doi.org/10.1016/j.ccr.2021.213809

    Article  CAS  Google Scholar 

  81. Madadrang CJ, Kim HY, Gao G, Wang N, Zhu J, Feng H, Gorring M, Kasner ML, Hou S (2012) Adsorption Behavior of EDTA-Graphene Oxide for Pb (II) Removal. ACS Appl Mater Interfaces 4:1186–1193. https://doi.org/10.1021/am201645g

    Article  CAS  PubMed  Google Scholar 

  82. Harikishore Kumar Reddy D, Lee S-M (2014) Magnetic biochar composite: facile synthesis, characterization, and application for heavy metal removal. Colloids Surf A 454:96–103. https://doi.org/10.1016/j.colsurfa.2014.03.105

    Article  CAS  Google Scholar 

  83. Zhao J, Liang G, Zhang X, Cai X, Li R, Xie X, Wang Z (2019) Coating magnetic biochar with humic acid for high efficient removal of fluoroquinolone antibiotics in water. Sci Total Environ 688:1205–1215. https://doi.org/10.1016/j.scitotenv.2019.06.287

    Article  CAS  PubMed  Google Scholar 

  84. Kołodyńska D, Bąk J (2018) Use of three types of magnetic biochar in the removal of copper(II) ions from wastewaters. Sep Sci Technol 53:1045–1057. https://doi.org/10.1080/01496395.2017.1345944

    Article  CAS  Google Scholar 

  85. Krishnan KA, Anirudhan TS (2008) Kinetic and equilibrium modelling of cobalt(II) adsorption onto bagasse pith based sulphurised activated carbon. Chem Eng J 137:257–264. https://doi.org/10.1016/j.cej.2007.04.029

    Article  CAS  Google Scholar 

  86. Kragović M, Stojmenović M, Petrović J, Loredo J, Pašalić S, Nedeljković A, Ristović I (2019) Influence of alginate encapsulation on point of zero charge (pHpzc) and thermodynamic properties of the natural and Fe(III) - Modified Zeolite. Procedia Manuf 32:286–293. https://doi.org/10.1016/j.promfg.2019.02.216

    Article  Google Scholar 

  87. Repo E, Koivula R, Harjula R, Sillanpää M (2013) Effect of EDTA and some other interfering species on the adsorption of Co(II) by EDTA-modified chitosan. Desalination 321:93–102. https://doi.org/10.1016/j.desal.2013.02.028

    Article  CAS  Google Scholar 

  88. Foo KY, Hameed B (2011) An overview of dyes removal via activated carbon adsorption process. Desalin Water Treat 19:255–274

    Article  Google Scholar 

  89. Huang Y, Wu H, Shao T, Zhao X, Peng H, Gong Y, Wan H (2018) Enhanced copper adsorption by DTPA-chitosan/alginate composite beads: mechanism and application in simulated electroplating wastewater. Chem Eng J 339:322–333. https://doi.org/10.1016/j.cej.2018.01.071

    Article  CAS  Google Scholar 

  90. Mei J, Mo S, Zhang H, Zheng X, Li Z (2020) Removal of Sr(II) from water with highly-elastic carboxymethyl chitosan gel. Int J Biol Macromol 163:1097–1105. https://doi.org/10.1016/j.ijbiomac.2020.07.038

    Article  CAS  PubMed  Google Scholar 

  91. Wang J-H, Atif S, Chen Y, Guo R (2020) Enhanced removal of Cu(II) from chemically diverse wastewater environment by EDTA-chitosan modified sewage sludge. DWT 190:167–178. https://doi.org/10.5004/dwt.2020.25647

    Article  CAS  Google Scholar 

  92. Ebner AD, Ritter JA, Navratil JD (2001) Adsorption of cesium, strontium, and cobalt ions on magnetite and a magnetite−silica composite. Ind Eng Chem Res 40:1615–1623. https://doi.org/10.1021/ie000695c

    Article  CAS  Google Scholar 

  93. El-Shamy OAA, El-Azabawy RE, El-Azabawy OE (2019) Synthesis and characterization of magnetite-alginate nanoparticles for enhancement of nickel and cobalt ion adsorption from wastewater. J Nanomater 2019:e6326012. https://doi.org/10.1155/2019/6326012

    Article  CAS  Google Scholar 

  94. Medyńska-Juraszek A, Ćwieląg-Piasecka I, Jerzykiewicz M, Trynda J (2020) Wheat straw biochar as a specific sorbent of cobalt in soil. Materials 13:2462. https://doi.org/10.3390/ma13112462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ahmadpour A, Tahmasbi M, Bastami TR, Besharati JA (2009) Rapid removal of cobalt ion from aqueous solutions by almond green hull. J Hazard Mater 166:925–930. https://doi.org/10.1016/j.jhazmat.2008.11.103

    Article  CAS  PubMed  Google Scholar 

  96. Pipíška M, Richveisová BM, Frišták V, Horník M, Remenárová L, Stiller R, Soja G (2017) Sorption separation of cobalt and cadmium by straw-derived biochar: a radiometric study. J Radioanal Nucl Chem 311:85–97. https://doi.org/10.1007/s10967-016-5043-7

    Article  CAS  Google Scholar 

  97. Zhuang S, Yin Y, Wang J (2018) Removal of cobalt ions from aqueous solution using chitosan grafted with maleic acid by gamma radiation. Nucl Eng Technol 50:211–215. https://doi.org/10.1016/j.net.2017.11.007

    Article  CAS  Google Scholar 

  98. Zhu Y, Hu J, Wang J (2014) Removal of Co2+ from radioactive wastewater by polyvinyl alcohol (PVA)/chitosan magnetic composite. Prog Nucl Energy 71:172–178. https://doi.org/10.1016/j.pnucene.2013.12.005

    Article  CAS  Google Scholar 

  99. Zhuang S, Wang J (2019) Removal of cobalt ion from aqueous solution using magnetic graphene oxide/chitosan composite. Environ Prog Sustain Energy 38:S32–S41. https://doi.org/10.1002/ep.12912

    Article  CAS  Google Scholar 

  100. Repo E, Warchol JK, Kurniawan TA, Sillanpää MET (2010) Adsorption of Co(II) and Ni(II) by EDTA- and/or DTPA-modified chitosan: Kinetic and equilibrium modeling. Chem Eng J 161:73–82. https://doi.org/10.1016/j.cej.2010.04.030

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Nuclear Energy Development Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Science and ICT (2018M2B2B1065631).

Author information

Authors and Affiliations

Authors

Contributions

BP: Conceptualization, Methodology, Experiment, Investigation, Writing—original draft. SJC: Project administration, Supervision, Writing—review & editing. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Sang-June Choi.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Human participants and/or animals

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, B., Choi, SJ. Magnetic biochar modified with crosslinked chitosan and EDTA for removing cobalt from aqueous solutions. J Radioanal Nucl Chem 332, 2077–2091 (2023). https://doi.org/10.1007/s10967-023-08831-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08831-6

Keywords

Navigation