Skip to main content
Log in

Adsorption forms of cesium in specific soils based on EXAFS spectroscopic investigations and sequential extraction experiments

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Extended X-ray absorption fine structure (EXAFS) spectroscopic investigation and sequential extraction were utilized to characterize the adsorption form of Cs in soil. The experimental results show that Cs+ mainly adsorbs on the surface of soil samples S1 and S2, which is a type of weak adsorption. Results of sequential extraction experiments can be directly explained with EXAFS spectra of the samples. The chemical index of weathering (CIW) of the soil has a decisive impact on the adsorption form of Cs+. The research results can provide strong support for the study of the adsorption and blocking behavior of cesium ions by the I/S mixed layer structure in soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fujii K, IkedaS AkamaA, Komatsu M, Takahashi M, Kaneko S (2014) Vertical migration of radiocesium and clay mineral composition in five forest soils contaminated by the Fukushima nuclear accident. Soil Sci Plant Nutr 60:751–764. https://doi.org/10.1080/00380768.2014.926781

    Article  CAS  Google Scholar 

  2. Steinhauser G, Merz S, Hainz D et al (2013) Artificial radioactivity in environmental media (air, rainwater, soil, vegetation) in Austria after the Fukushima nuclear accident. Environ Sci Pollut Res 20(4):2527–2534. https://doi.org/10.1007/s11356-012-1140-5

    Article  CAS  Google Scholar 

  3. Koarashi J, Atarashi-Andoh M, Matsunaga T, Sato T, Nagao S, Nagai H (2012) Factors affecting vertical distribution of Fukushima accident-derived radiocesium in soil under different land-use conditions. Sci Total Environ 431:392–401. https://doi.org/10.1016/j.scitotenv.2012.05.041

    Article  CAS  PubMed  Google Scholar 

  4. Saito T, Makino H, Tanaka S (2014) Geochemical and grain-size distribution of radioactive and stable cesium in Fukushima soils: implications for their long-term behavior. J Environ Radioact 138:11–18. https://doi.org/10.1016/j.jenvrad.2014.07.025

    Article  CAS  PubMed  Google Scholar 

  5. Okumura M, Nakamura H, Machida M (2013) Mechanism of strong affinity of clay minerals to radioactive cesium: first-principles calculation study for adsorption of cesium at frayed edge sites in muscovite. J Phys Soc Jpn 82(3):3802. https://doi.org/10.7566/JPSJ.82.033802

    Article  CAS  Google Scholar 

  6. Takahashi Y, Fan Q, Suga H et al (2017) Comparison of solid-water partitions of Radiocesium in river waters in Fukushima and Chernobyl areas. Sci Rep 7(1):12407. https://doi.org/10.1038/s41598-017-12391-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Benedicto A, Missana T, Fernandez AM (2014) Interlayer collapse affects on cesium adsorption onto illite. Environ Sci Technol 48(9):4909–4915. https://doi.org/10.1021/es5003346

    Article  CAS  PubMed  Google Scholar 

  8. Fuller AJ, Shaw S, Peacock CL et al (2014) Ionic strength and pH dependent multi-site sorption of Cs onto a micaceous aquifer sediment. Appl Geochem 40(1):32–42. https://doi.org/10.1016/j.apgeochem.2013.10.017

    Article  CAS  Google Scholar 

  9. Missana T, García-Gutiérrez M, Benedicto A (2014) Modelling of Cs sorption in natural mixed-clays and the effects of ion competition. Appl Geochem 49:95–102. https://doi.org/10.1016/j.apgeochem.2014.06.011

    Article  CAS  Google Scholar 

  10. Chen Z, Montavon G, Ribet S et al (2014) Key factors to understand in-situ behavior of Cs in Callovo-Oxfordian clay-rock (France). Chem Geol 387:47–58. https://doi.org/10.1016/j.chemgeo.2014.08.008

    Article  CAS  Google Scholar 

  11. Liu C, Zachara JM, Smith SC (2004) A cation exchange model to describe Cs(I) sorption at high ionic strength in subsurface sediments at Hanford site, USA. J Contam Hydrol 68(3–4):217–238. https://doi.org/10.1016/S0169-7722(03)00143-8

    Article  CAS  PubMed  Google Scholar 

  12. Poinssot C, Baeyens B, Bradbury MH (1999) Experimental and modelling studies of caesium sorption on illite. Geochim et Cosmochim Acta 63(19–20):3217–3227. https://doi.org/10.1016/S0016-7037(99)00246-X

    Article  CAS  Google Scholar 

  13. Lee J, Park SM, Jeon EK et al (2017) Selective and irreversible adsorption mechanism of cesium on illite. Appl Geochem 85:188–193. https://doi.org/10.1016/j.apgeochem.2017.05.019

    Article  CAS  Google Scholar 

  14. Cremers A, Elsen A, Preter PD et al (1988) Quantitative analysis of radiocaesium retention in soils. Nature 335(6187):247–249. https://doi.org/10.1038/335247a0

    Article  CAS  Google Scholar 

  15. Fuller AJ, Shaw S, Ward MB et al (2015) Caesium incorporation and retention in illite interlayers. Appl Clay Sci 108:128–134. https://doi.org/10.1016/j.clay.2015.02.008

    Article  CAS  Google Scholar 

  16. Park SM, Yang JS, Tsang D et al (2019) Enhanced irreversible fixation of cesium by wetting and drying cycles in soil. Environ Geochem Health 41(1):149–157. https://doi.org/10.1007/s10653-018-0174-0

    Article  CAS  PubMed  Google Scholar 

  17. Dohrmann R (2006) Cation exchange capacity methodology II: a modified silver–thiourea method. Appl Clay Sci 34(1–4):38–46. https://doi.org/10.1016/j.clay.2006.02.009

    Article  CAS  Google Scholar 

  18. Zachara JM, Smith SC, Liu C et al (2002) Sorption of Cs(I) to micaceous subsurface sediments from the Hanford site, USA. Geochim Cosmochim Acta 66(2):193–211. https://doi.org/10.1016/S0016-7037(01)00759-1

    Article  CAS  Google Scholar 

  19. Ogasawara S, Nakao A, Yanai J (2013) Radiocesium interception potential (RIP) of smectite and kaolin reference minerals containing illite (micaceous mineral) as impurity. Soil Sci Plant Nutr 59(6):852–857. https://doi.org/10.1080/00380768.2013.862158

    Article  CAS  Google Scholar 

  20. Wauters J, Vidal M, Elsen A et al (1996) Prediction of solid/liquid distribution coefficients of radiocaesium in soils and sediments, Part two: a new procedure for solid phase speciation of radiocaesium. Appl Geochem 11(4):595–599. https://doi.org/10.1016/0883-2927(96)00028-5

    Article  CAS  Google Scholar 

  21. Rigol A, Vidal M, Rauret G, Shand CA, Cheshire MV (1998) Competition of organic and mineral phases in radiocesium partitioning in organic soils of Scotland and the area near chernobyl. Environ Sci Technol 32(5):663–669. https://doi.org/10.1021/es970672y

    Article  CAS  Google Scholar 

  22. Fan QH, Tanaka M, Tanaka K, Sakaguchi A, Takahashi Y (2014) An EXAFS study on the effects of natural organic matter and the expandability of clay minerals on cesium adsorption and mobility. Geochim Cosmochim Acta 135:49–65. https://doi.org/10.1016/j.gca.2014.02.049

    Article  CAS  Google Scholar 

  23. Bostick BC, Vairavamurthy MA (2002) Cesium adsorption on clay minerals: an EXAFS spectroscopicinvestigation. Environ Sci Technol 36(12):2670. https://doi.org/10.1021/es0156892

    Article  CAS  PubMed  Google Scholar 

  24. Rob N, Haller M, Preter PD (1991) Sorption of cesium on illite: non-equilibrium behaviour and reversibility. Geochim Cosmochim Acta 55(2):433–440. https://doi.org/10.1016/0016-7037(91)90002-M

    Article  Google Scholar 

  25. Durrant CB, Begg JD, Kersting AB et al (2017) Cesium sorption reversibility and kinetics on illite, montmorillonite, and kaolinite. Sci Total Environ 610–611:511–520. https://doi.org/10.1016/j.scitotenv.2017.08.122

    Article  CAS  PubMed  Google Scholar 

  26. Bergaya F, Theng B, Lagaly G (2006) Handbook of clay science. Elsevier Science, New York, pp 1220–1224

    Google Scholar 

  27. Harnois L (1988) The CIW index: a new chemical index of weathering. Sediment Geol 55(3–4):319–322. https://doi.org/10.1016/0037-0738(88)90137-6

    Article  CAS  Google Scholar 

  28. Mukai H, Hirose A, Motai S et al (2016) Cesium adsorption/desorption behavior of clay minerals considering actual contamination conditions in Fukushima. Sci Rep 6:21543. https://doi.org/10.1038/srep21543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nakao A, Thiry Y, Funakawa S, Kosaki T (2008) Characterization of the frayed edge site of micaceous minerals in soilclays influenced by different pedogenetic conditions in Japan and northern Thailand. Soil Sci Plant Nutr 54:479–489. https://doi.org/10.1111/j.1747-0765.2008.00262.x

    Article  CAS  Google Scholar 

  30. Vandebroek L, Hees MV, Delvaux B et al (2012) Relevance of Radiocaesium Interception Potential (RIP) on a worldwide scale to assess soil vulnerability to37Cscontamination. J Environ Radioact 104:87–93. https://doi.org/10.1016/j.jenvrad.2011.09.002

    Article  CAS  PubMed  Google Scholar 

  31. Fan Q, Yamaguchi N, Tanaka M et al (2014) Relationship between the adsorption species of cesium and radiocesium interception potential in soils and minerals: an EXAFS study. J Environ Radioact 138:92–100. https://doi.org/10.1016/j.jenvrad.2014.08.009

    Article  CAS  PubMed  Google Scholar 

  32. Wu H, Zhao X, Wang W, He B, Geng R, Fan Q (2019) Interaction mechanism of radioactive cesium on Beishan granite. Sci Sin Chim 49:165–174

    Article  Google Scholar 

  33. Chan WP, Kim SM, Kim I et al (2021) Sorption behavior of cesium on silt and clay soil fractions. J Environ Radioact 233:106592. https://doi.org/10.1016/j.jenvrad.2021.106592

    Article  CAS  Google Scholar 

  34. Okumura M, Nakamura H, Machida M (2013) Mechanism of strong affinity of clay minerals to radioactive cesium: first-principles calculation study for adsorption of cesium at frayed edge sites in muscovite. J Phys Soc Jpn 82:033802. https://doi.org/10.7566/JPSJ.82.033802

    Article  CAS  Google Scholar 

  35. Wang W, Ding Z, Wang Y, Geng R, Zhang W, Wang J, Liang J, Li P, Fan Q (2021) Transport behaviors of Cs(I) in granite porous media: effects of mineral composition, HA, and coexisting cations. Chemosphere 268:129341. https://doi.org/10.1016/j.chemosphere.2020.129341

    Article  CAS  PubMed  Google Scholar 

  36. Stixrude L, Peacor DR (2002) First-principles study of illite-smectite and implications for clay mineral systems. Nature 420(6912):165–168. https://doi.org/10.1038/nature01155

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research and Development Program of China (2018YFC1801105), and State Key Laboratory of NBC Protection for Civilian (SKLNBC2019-01, SKLNBC2020-09).

Funding

State Key Laboratory of NBC Protection for Civilian,SKLNBC2020-09, Wenzhuo Chen, SKLNBC2019-01, Zhanguo Li, National Key Research and Development Program of China, 2018YFC1801105, Zhanguo Li.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhanguo Li or Shanqiang Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Chen, W., Lu, M. et al. Adsorption forms of cesium in specific soils based on EXAFS spectroscopic investigations and sequential extraction experiments. J Radioanal Nucl Chem 332, 527–538 (2023). https://doi.org/10.1007/s10967-023-08793-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08793-9

Keywords

Navigation