Skip to main content
Log in

Radioactivity of phosphate rocks and products used in Serbia and assessment of radiation risk for workers

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The activity concentrations of 238U, 226Ra, 232Th, and 40K in 56 phosphate samples (phosphate rocks, monocalcium, and dicalcium phosphates) used in Serbia were determined using gamma spectrometry to assess the exposure level of workers. Radium equivalent index (Raeq), absorbed gamma dose rate (DR), annual effective dose (AED), and excess lifetime cancer risk (ELCR) were evaluated. The highest external exposure was recorded when working with phosphate rocks, as Raeq, DR, and ELCR exceed the recommended/average values. The annual effective doses for workers in the phosphate industry are below 1 mSv y−1 and comparable to the values from other studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Korany KA, Masoud AM, Rushdy OE, Alrowaili ZA, Hassanein FH, Taha MH (2021) Phosphate, phosphoric acid and phosphogypsum natural radioactivity and radiological hazards parameters. J Radioanal Nucl Chem 329:391–399. https://doi.org/10.1007/s10967-021-07796-8

    Article  CAS  Google Scholar 

  2. Fathabadi N, Vasheghani Farahani M, Moradi M, Hadadi B (2012) Estimates of the occupational exposure to tenorm in the phosphoric acid production plant in Iran. Radiat Prot Dosim 151:600–603. doi:https://doi.org/10.1093/rpd/ncs021

    Article  CAS  Google Scholar 

  3. Avelar AC, Ferreira WM, Pemberthy D, Abad E, Amaral MA (2016) Dioxins, furans, biphenyls, arsenic, thorium and uranium in natural and anthropogenic sources of phosphorus and calcium used in agriculture. Sci Total Environ 551–552:695–698. doi:https://doi.org/10.1016/j.scitotenv.2016.01.126

    Article  CAS  PubMed  Google Scholar 

  4. El-Bahi SM, Sroor A, Mohamed GY, El-Gendy NS (2017) Radiological impact of natural radioactivity in egyptian phosphate rocks, phosphogypsum and phosphate fertilizers. Appl Radiat Isotopes 123:121–127. doi:https://doi.org/10.1016/j.apradiso.2017.02.031

    Article  CAS  Google Scholar 

  5. Hassan NM, Mansour NA, Fayez-Hassan M, Sedqy E (2016) Assessment of natural radioactivity in fertilizers and phosphate ores in Egypt. J Taibah Univ Sci 10:296–306. doi:https://doi.org/10.1016/j.jtusci.2015.08.009

    Article  Google Scholar 

  6. Kuzmanović P, Todorović N, Forkapić S, Filipović Petrović L, Knežević J, Nikolov J, Miljević B (2020) Radiological characterization of phosphogypsum produced in Serbia. Radiat Phys Chem 166:108463. https://doi.org/10.1016/j.radphyschem.2019.108463

    Article  CAS  Google Scholar 

  7. Abbady AGE, Uosif MAM, El-Taher A (2005) Natural radioactivity and dose assessment for phosphate rocks from Wadi El-Mashash and El-Mahamid Mines, Egypt. J Environ Radioactiv 84:65–78. doi:https://doi.org/10.1016/j.jenvrad.2005.04.003

    Article  CAS  Google Scholar 

  8. International Atomic Energy Agency (2013) Radiation protection and management of NORM residues in the phosphate industry. Safety reports series No.78, IAEA, Vienna https://www.iaea.org/publications/8947/radiation-protection-and-management-of-norm-residues-in-the-phosphate-industry

  9. International Atomic Energy Agency (2003) Extent of Environmental Contamination by Naturally Occurring Radioactive Material (NORM) and Technological Options for Mitigation, Technical Reports Ser. No. 419, Vienna, Austria https://www.iaea.org/publications/6789/extent-of-environmental-contamination-by-naturally-occurring-radioactive-material-norm-and-technological-options-for-mitigation

  10. Official Gazette RS 36/18 (2018) Regulation on limits of radionuclide content in drinking water, foodstuffs, feeding stuffs, drugs, items of general use, building materials and other goods to be placed on the market (in Serbian)

  11. Casacuberta N, Masqué P, Garcia-Orellana J (2011) Fluxes of 238U decay series radionuclides in a dicalcium phosphate industrial plant. J Hazard Mater 190:245–252. doi:https://doi.org/10.1016/j.jhazmat.2011.03.035

    Article  CAS  PubMed  Google Scholar 

  12. Vranješ B, Milićević D, Šefer D, Stefanović S, Ajtić J, Mitrović BM (2020) Presence of natural radionuclides and toxic elements in monocalcium phosphate, complete feed and pig manure. Sci Total Environ 720:137578. doi:https://doi.org/10.1016/j.scitotenv.2020.137578

    Article  CAS  PubMed  Google Scholar 

  13. Casacuberta N, Masqué P, Garcia-Orellana J, Bruach JM, Anguita M, Gasa J, Villa M, Hurtado S, Garcia-Tenorio R (2009) Radioactivity contents in dicalcium phosphate and the potential radiological risk to human populations. J Hazard Mater 170:814–823. doi:https://doi.org/10.1016/j.jhazmat.2009.05.037

    Article  CAS  PubMed  Google Scholar 

  14. Zhou Y, Xiao C, Yang S, Yin H, Yang Z, Chi R (2021) Life cycle assessment of feed grade mono-dicalcium phosphate production in China, a case study. J Clean Prod 290:125182. doi:https://doi.org/10.1016/j.jclepro.2020.125182

    Article  CAS  Google Scholar 

  15. Khater AE, Hussein MA, Hussein MI (2004) Occupational exposure of phosphate mine workers: airborne radioactivity measurements and dose assessment. J Environ Radioactiv 75:47–57. doi:https://doi.org/10.1016/j.jenvrad.2003.11.001

    Article  CAS  Google Scholar 

  16. Potiriadis C, Koukouliou V, Seferlis S, Kehagia K (2010) Assessment of the occupational exposure at a fertiliser industry in the northern part of Greece. Radiat Prot Dosim 144(1–4):668–671. doi:https://doi.org/10.1093/rpd/ncq309

    Article  CAS  Google Scholar 

  17. Gäfvert T, Holm E, Roos P (2001) Radionuclide fluxes at a plant manufacturing dicalcium phosphate for domestic animals. J Environ Radioactiv 54:61–73. doi:https://doi.org/10.1016/s0265-931x(00)00166-1

    Article  Google Scholar 

  18. International Atomic Energy Agency (1989) Measurement of radionuclides in food and the environment, technical reports series No. 295, Vienna, Austria

  19. Kuzmanović P, Todorović N, Filipović Petrović L, Mrđa D, Forkapić S, Nikolov J, Knežević J (2020) Radioactivity of building materials in Serbia and assessment of radiological hazard of gamma radiation and radon exhalation. J Radioanal Nucl Chem 324:1077–1087. doi:https://doi.org/10.1007/s10967-020-07130-8

    Article  CAS  Google Scholar 

  20. Kuzmanović P, Todorović N, Mrđa D, Nikolov J, Knežević J, Hansman J (2019) Radiation exposure to zircon minerals in serbian ceramic industries. J Radioanal Nucl Chem 322:949–960. https://doi.org/10.1007/s10967-019-06743-y

    Article  CAS  Google Scholar 

  21. Moens L, Donder JD, Xi-lei L, Corte FD, Wispelaere AD, Simonits A, Hoste J (1981) Calculation of the absolute peak efficiency of gamma-ray detectors for different counting geometries. Nucl Instr Methods 187:451–472. https://doi.org/10.1016/0029-554X(81)90374-8

    Article  CAS  Google Scholar 

  22. UNSCEAR (2000) Sources and effects of ionizing radiation. United Nations Scientific Committee on Effects of Atomic Radiation. Exposures from Natural Radiation Sources, Annex B. United Nations Publication, New York

    Google Scholar 

  23. Beretka J, Mathew PJ (1985) Natural radioactivity of australian building materials, industrial wastes and by-products. Health Phys 48:87–95. doi:https://doi.org/10.1097/00004032-198501000-00007

    Article  CAS  PubMed  Google Scholar 

  24. NEA-OECD (Organization for Economic Co-operation and Development) (1979) Exposure to radiation from radioactivity in building materials. Report by a Group of Experts of The OECD Nuclear Energy Agency

  25. Council Directive 2013/59/Euratom of 5 Dec (2013) (2014) Laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/ Euratom and 2003/122/Euratom. L13, vol 57. https://energy.ec.europa.eu/celex-32013l0059-en-txt_en

  26. Al-Jundi J, Al-Ahmad N, Shehadeh H, Afaneh F, Maghrabi M, Gerstmann U, Hollriegl V, Oeh U (2008) Investigations on the activity concentrations of 238U, 226Ra, 228Ra, 210Pb and 40K in Jordan phosphogypsum and fertilizers. Radiat Prot Dosim 13:449–454. doi:https://doi.org/10.1093/rpd/ncn214

    Article  CAS  Google Scholar 

  27. Masok FB, Masiteng PL, Mavunda RD, Maleka PP, Winkler H (2018) Measurement of radioactivity concentration in soil samples around phosphate rock storage facility in Richards Bay, South Africa. J Radiat Res Appl Sc 11:29–36. doi:https://doi.org/10.1016/j.jrras.2017.10.006

    Article  CAS  Google Scholar 

  28. Khan K, Khan HM, Tufail M, Khatibeh AJAH, Ahmad N (1998) Radiometric analysis of Hazara phosphate rock and fertilizers in Pakistan. J Environ Radioactiv 38:77–84. doi:https://doi.org/10.1016/s0265-931x(97)00018-0

    Article  CAS  Google Scholar 

  29. Wasiolek MO (1995) Estimates of the Occupational Radiological Hazard in the phosphate fertilizers industry in Poland. Radiat Prot Dosim 58:269–276. doi:https://doi.org/10.1093/oxfordjournals.rpd.a082624

    Article  Google Scholar 

  30. Sam KA, Holm E (1995) The natural radioactivity in phosphate deposits from Sudan. Sci Total Environ 162:173–178. doi:https://doi.org/10.1016/0048-9697(95)04452-7

    Article  CAS  Google Scholar 

  31. Gaafar I, El-Shershaby A, Zeidan I, El-Ahll LS (2016) Natural radioactivity and radiation hazard assessment of phosphate mining, Quseir-Safaga area, Central Eastern Desert, Egypt. NRIAG J Astron Geophys 5:160–172. doi:https://doi.org/10.1016/j.nrjag.2016.02.002

    Article  Google Scholar 

  32. Shubayr N, Alashban Y, Al-Shehri S, Almurayshid M (2021) Assessment of external occupational dose of phosphate mine workers in Saudi Arabia using thermoluminescent dosemeters. Radiat Prot Dosim 196:220–225. https://doi.org/10.1093/rpd/ncab150

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the Ministry of Education, Science and Technological Development of the Republic of Serbia, Grant No. 451-03-9/2022-14/ 200125.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Predrag Kuzmanović.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzmanović, P., Petrović, L.F., Hansman, J. et al. Radioactivity of phosphate rocks and products used in Serbia and assessment of radiation risk for workers. J Radioanal Nucl Chem 332, 699–712 (2023). https://doi.org/10.1007/s10967-023-08785-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08785-9

Keywords

Navigation