Skip to main content
Log in

Kinetic properties and electro-separation of U on binary liquid Ga–Al eutectic alloy cathode

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The binary Ga–Al alloy cathode has been proven to be a prospective candidate for the separation of actinides over lanthanides (Lns) in the dry reprocessing. Therefore, in this work the electrochemical behaviors of U(III) on solid Al, liquid Ga and Ga–Al eutectic alloy cathodes were studied by cyclic voltammetry, and the kinetic properties of U(III)/U on these reactive cathodes were also investigated via electrochemical impedance spectroscopy technique in LiCl–KCl melts. The results showed that the exchange current density (j0) of U(III)/U on the Ga–Al eutectic alloy cathode is the largest, and followed the order: Ga–Al eutectic alloy > Ga > Al. Finally, U was electro-separated on the binary Ga–Al eutectic alloy cathode in a molten salt system containing U and representative Lns (La, Ce, Pr, Nd). The electrolysis products were validated to be Al3U and Ga3U according to XRD and SEM–EDS characterizations. The extraction rate of U was determined to be 88.3% via ICP-OES. This work is of theoretical guidance for high-temperature molten salt electro-separation of An over Ln.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Laidler JJ, Battles J, Miller W, Ackerman J, Carls E (1997) Development of pyroprocessing technology. Prog Nucl Energy 31:131–140

    CAS  Google Scholar 

  2. Koyama T, Sakamura Y, Iizuka M, Kato T, Murakami T, Glatz JP (2012) Development of pyro-processing fuel cycle technology for closing actinide cycle. Procedia Chem 7:772–778

    CAS  Google Scholar 

  3. Finne J, Picard G, Sanchez S, Walle E, Conocar O, Lacquement J, Boursier JM, Noel D (2005) Molten salt/liquid metal extraction: electrochemical determination of activity coefficients in liquid metals. J Nucl Mater 344:165–168

    CAS  Google Scholar 

  4. Li SX, Herrmann SD, Simpson MF (2010) Electrochemical analysis of actinides and rare earth constituents in liquid cadmium cathode product from spent fuel electrorefining. Nucl Technol 171:292–299

    CAS  Google Scholar 

  5. Bourg S, Hill C, Caravaca C, Rhodes C, Ekberg C, Taylor R, Geist A, Modolo G, Cassayre L, Malmbeck R (2011) ACSEPT-Partitioning technologies and actinide science: towards pilot facilities in Europe. Nucl Eng Des 241:3427–3435

    CAS  Google Scholar 

  6. Herrmann S, Li S, Simpson M, Phongikaroon S (2006) Electrolytic reduction of spent nuclear oxide fuel as part of an integral process to separate and recover actinides from fission products. Sep Sci Technol 41:1965–1983

    CAS  Google Scholar 

  7. Koyama T, Iizuka M (2015) Pyrochemical fuel cycle technologies for processing of spent nuclear fuels: developments in Japan. Reprocessing and Recycling of Spent Nuclear Fuel. Elsevier, Amsterdam, pp 457–519

    Google Scholar 

  8. Lee HS, Park GI, Kang KH, Hur JM, Kim JG, Ahn DH, Cho YZ, Kim EH (2011) Pyroprocessing technology development at KAERI. Nucl Eng Technol 43:317–328

    CAS  Google Scholar 

  9. Li SX, Herrmann S, Goff K, Simpson M, Benedict R (2009) Actinide recovery experiments with bench-scale liquid cadmium cathode in real fission product-laden molten salt. Nucl Technol 165:190–199

    CAS  Google Scholar 

  10. Koyama T, Iizuka M, Shoji Y, Fujita R, Tanaka H, Kobayashi T, Tokiwai M (1997) An experimental study of molten salt electrorefining of uranium using solid iron cathode and liquid cadmium cathode for development of pyrometallurgical reprocessing. J Nucl Sci Technol 34:384–393

    CAS  Google Scholar 

  11. Han W, Li M, Zhang ML, Yan YD (2016) Progress in preparation of rare earth metals and alloys by electrodeposition in molten salts. Rare Met 35:811–825

    Google Scholar 

  12. Volkovich VA, Maltsev DS, Raguzina EV, Dedyukhin AS, Shchetinskiy AV, Yamshchikov LF, Chukin AV (2019) Thermodynamics of rare earth elements and uranium in gallium based quaternary metallic alloys. J Alloy Compd 787:367–378

    CAS  Google Scholar 

  13. Cassayre L, Caravaca C, Jardin R, Malmbeck R, Masset P, Mendes E, Serp J, Soucek P, Glatz JP (2008) On the formation of U–Al alloys in the molten LiCl–KCl eutectic. J Nucl Mater 378:79–85

    CAS  Google Scholar 

  14. Mendes E, Malmbeck R, Nourry C, Soucek P, Glatz JP (2012) On the electrochemical formation of Pu–Al alloys in molten LiCl–KCl. J Nucl Mater 420:424–429

    CAS  Google Scholar 

  15. Serp J, Allibert M, Le Terrier A, Malmbeck R, Ougier M, Rebizant J, Glatz JP (2005) Electroseparation of actinides from lanthanides on solid aluminum electrode in LiCl–KCl eutectic melts. J Electrochem Soc 152:C167–C172

    CAS  Google Scholar 

  16. Cassayre L, Malmbeck R, Masset P, Rebizant J, Serp J, Soucek P, Glatz JP (2007) Investigation of electrorefining of metallic alloy fuel onto solid Al cathodes. J Nucl Mater 360:49–57

    CAS  Google Scholar 

  17. Soucek P, Cassayre L, Malmbeck R, Mendes E, Jardin R, Glatz JP (2008) Electrorefining of U–Pu–Zr-alloy fuel onto solid aluminium cathodes in molten LiCl–KCl. Radiochim Acta 96:315–322

    CAS  Google Scholar 

  18. Liu K, Liu YL, Chai ZF, Shi WQ (2021) Electroseparation of uranium from lanthanides (La, Ce, Pr, Nd and Sm) on liquid gallium electrode. Sep Purif Technol 265:118524

    CAS  Google Scholar 

  19. Yin T, Liu Y, Jiang S, Yan Y, Wang G, Chai Z, Shi W (2021) Kinetic properties and electrochemical separation of uranium on liquid bismuth electrode in LiCl–KCl melt. J Electrochem Soc 168:032503

    CAS  Google Scholar 

  20. Volkovich VA, Maltsev DS, Yamshchikov LF, Chukin AV, Smolenski VV, Novoselova AV, Osipenko AG (2015) Thermodynamic properties of uranium in gallium–aluminium based alloys. J Nucl Mater 465:153–160

    CAS  Google Scholar 

  21. Liu K, Chai ZF, Shi WQ (2021) Liquid electrodes for An/Ln separation in pyroprocessing. J Electrochem Soc 168:032507

    CAS  Google Scholar 

  22. Lim KH, Yun JI (2019) Study on the exchange current density of lanthanide chlorides in LiCl–KCl molten salt. Electrochim Acta 295:577–583

    CAS  Google Scholar 

  23. Guo S, Wu E, Zhang J (2018) Investigation of electrochemical kinetics for La(III)/La reaction in molten LiCl–KCl eutectic salt using potentiometric polarization. J Nucl Mater 510:414–420

    CAS  Google Scholar 

  24. Guo S, Wu E, Zhang J (2018) Exchange current density of Gd(III)/Gd reaction in LiCl–KCl eutectic and analysis of errors caused by various methods. Electrochim Acta 259:253–261

    CAS  Google Scholar 

  25. Yin T, Liu Y, Yang D, Yan Y, Wang G, Chai Z, Shi W (2020) Thermodynamics and kinetics properties of lanthanides (La, Ce, Pr, Nd) on liquid bismuth electrode in LiCl–KCl molten salt. J Electrochem Soc 167:122507

    CAS  Google Scholar 

  26. Yoon D, Phongikaroon S (2017) Measurement and analysis of exchange current density for U/U3+ reaction in LiCl–KCl eutectic salt via various electrochemical techniques. Electrochim Acta 227:170–179

    CAS  Google Scholar 

  27. Yoon D, Phongikaroon S, Zhang J (2016) Electrochemical and thermodynamic properties of CeCl3 on liquid cadmium cathode (LCC) in LiCl–KCl eutectic salt. J Electrochem Soc 163:E97–E103

    CAS  Google Scholar 

  28. Shi W, Yang D, Jiang S, Liu Y, Yin TQ, Li M, Wang L, Luo W, Chai Z (2021) Electrodeposition mechanism of La3+ on Al, Ga and Al–Ga alloy cathodes in LiCl–KCl eutectic salt. J Electrochem Soc 168:062511

    Google Scholar 

  29. Murakami T, Kitawaki S, Sakamura Y, Iizuka M, Nohira T, Kofuji H (2016) Actinides separation from lanthanides using a liquid Ga electrode in LiCl–KCl melts. J Nucl Radiochem Sci 16:5–10

    CAS  Google Scholar 

  30. Yang DW, Liu YL, Yin TQ, Jiang SL, Zhong YK, Wang L, Li M, Chai ZF, Shi WQ (2020) Application of binary Ga–Al alloy cathode in U separation from Ce: the possibility in pyroprocessing of spent nuclear fuel. Electrochim Acta 353:136449

    CAS  Google Scholar 

  31. Yin T, Liu K, Liu Y, Yan Y, Wang G, Chai Z, Shi W (2018) Electrochemical and thermodynamic properties of uranium on the liquid bismuth electrode in LiCl–KCl eutectic. J Electrochem Soc 165:D722–D730

    CAS  Google Scholar 

  32. Yin T, Liu K, Liu Y, Yan Y, Wang G, Chai Z, Shi W (2018) Electrochemical and thermodynamic properties of Pr on the liquid Bi electrode in LiCl–KCl eutectic melt. J Electrochem Soc 165:D452–D460

    CAS  Google Scholar 

  33. Liu YL, Ye GA, Liu K, Yuan LY, Chai ZF, Shi WQ (2015) Electrochemical behavior of La(III) on the zinc-coated W electrode in LiCl–KCl eutectic. Electrochim Acta 168:206–215

    CAS  Google Scholar 

  34. Wang L, Liu YL, Liu K, Tang SL, Yuan LY, Su LL, Chai ZF, Shi WQ (2014) Electrochemical extraction of cerium from CeO2 assisted by AlCl3 in molten LiCI–KCI. Electrochim Acta 147:385–391

    CAS  Google Scholar 

  35. Vandarkuzhali S, Chandra M, Ghosh S, Samanta N, Nedumaran S, Reddy BP, Nagarajan K (2014) Investigation on the electrochemical behavior of neodymium chloride at W Al and Cd electrodes in molten LiCl–KCl eutectic. Electrochim Acta 145:86–98

    CAS  Google Scholar 

  36. Fukasawa K, Uehara A, Nagai T, Fujii T, Yamana H (2011) Electrochemical and spectrophotometric study on trivalent neodymium ion in molten binary mixtures of LiCl and alkali earth chlorides. J Nucl Mater 414:265–269

    CAS  Google Scholar 

  37. Novoselova A, Smolenski V (2013) Electrochemical behavior of neodymium compounds in molten chlorides. Electrochim Acta 87:657–662

    CAS  Google Scholar 

  38. Yan YD, Xu YL, Zhang ML, Xue Y, Han W, Huang Y, Chen Q, Zhang ZJ (2013) Electrochemical extraction of neodymium by co-reduction with aluminum in LiCl–KCl molten salt. J Nucl Mater 433:152–159

    CAS  Google Scholar 

  39. Bard AJ, Faulkner LR (2001) Fundamentals and applications. Electrochem Methods 2:580–632

    Google Scholar 

  40. Margarit-Mattos ICP (2020) EIS and organic coatings performance: revisiting some key points. Electrochim Acta 354:136725

    CAS  Google Scholar 

  41. Reddy BP, Vandarkuzhali S, Subramanian T, Venkatesh P (2004) Electrochemical studies on the redox mechanism of uranium chloride in molten LiCl–KCl eutectic. Electrochim Acta 49:2471–2478

    CAS  Google Scholar 

  42. Cao D, Ma Y, Shi Z, Xu J, Hu X, Wang Z (2020) Performance of protective oxide films on Fe–Ni alloy anodes in molten KF–AlF3–Al2O3 salts at 700° C. Electrochim Acta 347:136275

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Major Program of the National Natural Science Foundation of China (No. 21790373), National Science Fund for Distinguished Young Scholars (No. 21925603), National Natural Science Foundation of China (No. U20B2020), Project No. 1211111126-9 by Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Contributions

DWY: Investigation, Methodology, Visualization, Validation, Data curation, Software, Formal analysis, Writing Original draft, Writing Reviewing and Editing. SLJ: Investigation, Data curation, Software, Formal analysis, Reviewing. YLL: Supervision, Validation, Data curation, Funding acquisition, Reviewing and Editing. JZC: Data curation, Software. DDW: Data curation. YPZ; LW: Data curation. ZFC: Conceptualization, Supervision. WQS: Conceptualization, Supervision, Validation, Visualization, Funding acquisition, Writing Reviewing and Editing, Project administration.

Corresponding authors

Correspondence to Ya-Lan Liu or Wei-Qun Shi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 38 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, DW., Jiang, SL., Liu, YL. et al. Kinetic properties and electro-separation of U on binary liquid Ga–Al eutectic alloy cathode. J Radioanal Nucl Chem 332, 1377–1387 (2023). https://doi.org/10.1007/s10967-023-08782-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08782-y

Keywords

Navigation