Skip to main content
Log in

Highly selective separation of medical isotope 99mTc from irradiated 100Mo target using PEG-based resins

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The aim of present study was to determine the efficiency of commercially available PEG-based resins for separation of 99mTc from irradiated 100Mo target. Stable and radioactive tracer studies demonstrated that these PEG-based resins have extreme selectivity toward ReO4 (99mTcO4) over MoO42− ions. Moreover, PEG-based resins still have 95% adsorption efficiency even after 600 kGy γ-irradiation, suggesting the excellent irradiation stability. The adsorption rate of ReO4 and 99mTcO4 rapidly increased to 90% in 10 s. Subsequently, three-column chromatographic processing based on these superior resins for isolating 99mTc was developed and examined. The separation investigation of 99mTc medical radioisotope produced by 100Mo(p, 2n)99mTc reaction was successfully performed. The recovery yield and the radionuclidic purity of 99mTc was about 90% and 99.9%, respectively. Moreover, the separation of 99mTc from a low specific activity 99Mo was also investigated. We are excited about the potential of this procedure with these accessible commercial availability PEG-based resins to address 99mTc separation problems and increase access to medical nuclide 99mTc for the general community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Perrier C, Segré E (1937) Technetium: radioactive isotopes of element 43. Nature 140:193–194

    CAS  Google Scholar 

  2. Alberto R, Bergamaschi G, Braband H, Fox T, Amendola V (2012) 99TcO4: Selective recognition and trapping in aqueous solution. Angew Chem Int Ed 51:1–5

    Google Scholar 

  3. Jiang N, Liang J, Lu X, Liu S, Zhong F, Wu J (2000) Analysis of the response to treatment of rheumatoid arthritis with 99Tc-MDP. J Mod Clin Med Bioeng 6:180–182

    Google Scholar 

  4. Wang L, Gu Q, Xu Y, Li S, Gui J, Yang J, Yao Q, Ji Y (2008) Effects of Yunke (technetium-99 conjugated with methylene diphosphonate; (99)Tc-MDP) and/or colloidal chromic phosphate phosphonium-32, alone and in combination, in rats with adjuvant arthritis. Clin Exp Pharmacol Physiol 35:23–28

    PubMed  Google Scholar 

  5. Duatti A (2021) Review on 99mTc radiopharmaceuticals with emphasis on new advancements. Nucl Med Biol 92:202–216

    CAS  PubMed  Google Scholar 

  6. Cieszykowska I, Jerzyk K, Żółtowska M, Janiak T, Birnbaum G (2022) Studies on electrochemical dissolution of sintered molybdenum discs as a potential method for targets dissolution in 99mTc production. J Radioanal Nucl Chem 331:1029–1037

    CAS  Google Scholar 

  7. Boschi A, Martini P, Pasquali M, Uccelli L (2017) Recent achievements in Tc-99m radiopharmaceutical direct production by medical cyclotrons. Drug Dev Ind Pharm 43(9):1402–1412

    CAS  PubMed  Google Scholar 

  8. Boyd RE (1982) A molybdenum-99: technetium-99m generator. Radiochim Acta 30:123–145

    CAS  Google Scholar 

  9. Van Noorden R (2013) The medical testing crisis. Nature 504:202–204

    PubMed  Google Scholar 

  10. Filzen LM, Ellingson LR, Paulsen AM, Hung JC (2017) Potential ways to address shortage situations of Mo-99/Tc-99m. J Nucl Med Technol 45(1):1–5

    PubMed  Google Scholar 

  11. Ruth T (2009) Accelerating production of medical isotopes. Nature 457:536–537

    CAS  PubMed  Google Scholar 

  12. Uddin MS, Afroze N, Hossain SM, Zakaria AKM, Islam MA (2015) Measurement of cross section of the Mo-98 (n, gamma) Mo-99 reaction using monochromatic thermal neutrons. Radiochim Acta 103:85–90

    CAS  Google Scholar 

  13. Chattopadhyay S, Dass SS, Dass MK, Goomer NC (2009) Recovery of 99mTc from Na2[Mo-99]MoO4 solution obtained from reactor-produced (n, γ) 99Mo using a tiny Dowex-1 column in tandem with a small alumina column. Appl Radiat Isot 66:1814–1817

    Google Scholar 

  14. Koźmiński P, Gumiela M, Walczak R, Wawrowicz K, Bilewicz A (2021) A semi-automated module for the separation and purification of 99mTc from simulated molybdenum target. J Radioanal Nucl Chem 328:1217–1224

    Google Scholar 

  15. Gopalakrishna A, Naik H, Suryanarayana SV, Naik Y, Nimje VT, Nayak BK, Sarkar SK, Padmanabhan S, Kothalkar C, Naskar P, Dey AC, Goswami A (2016) Preparation of 99Mo from the 100Mo (γ, n) reaction and chemical separation of 99mTc. J Radioanal Nucl Chem 308:431–438

    CAS  Google Scholar 

  16. Qaim SM, Sudar S, Scholten B, Koning AJ, Coenen HH (2014) Evaluation of excitation functions of 100Mo(p, d+pn)99Mo and 100Mo(p, 2n)99mTc reactions: estimation of long-lived Tc-impurity and its implication on the specific activity of cyclotron-produced 99mTc. Appl Radiat Isot 85:101–113

    CAS  PubMed  Google Scholar 

  17. Martini P, Boschi A, Cicoria G, Zagni F, Corazza A, Uccelli L, Pasquali M, Pupillo G, Marengo M, Loriggiola M, Skliarova H, Mou L, Cisternino S, Carturan S, Melendez-Alaforte L, Uzunov NM, Bello M, Alvarez CR, Esposito J, Duatti A (2018) In-house cyclotron production of high-purity Tc-99m and Tc-99m radiopharmaceuticals. Appl Radiat Isot 139:325–331

    CAS  PubMed  Google Scholar 

  18. Eslami M, Kakavand T (2014) Simulation of the direct production of Tc-99m at a small cyclotron. Nucl Instr Met Phys Res B 329:18–21

    CAS  Google Scholar 

  19. Beaver JE, Hupf HB (1971) Production of 99mTc on a medical cyclotron: a feasibility study. J Nucl Med 12:739–741

    CAS  PubMed  Google Scholar 

  20. Bénard F, Buckley KR, Ruth TJ, Zeisler SK, Klug J, Hanemaayer V, Vuckovic M, Hou X, Celler A, Appiah JP, Valliant J, Kovacs MS, Schaffer P (2014) Implementation of multi-curie production of Tc-99m by conventional medical cyclotrons. J Nucl Med 55:1017–1022

    PubMed  Google Scholar 

  21. Andersson JD, Thomas B, Selivanova SV, Berthelette E, Wilson JS, McEwan AJB, Gagnon K (2018) Robust high-yield ~1 TBq production of cyclotron based sodium [99mTc]pertechnetate. Nucl Med Biol 60:63–70

    CAS  PubMed  Google Scholar 

  22. Dash A, Knapp FF, Pillai M (2013) 99Mo/99mTc separation: an assessment of technology options. Nucl Med Biol 40(2):167–176

    CAS  PubMed  Google Scholar 

  23. Gumiela M (2018) Cyclotron production of 99mTc: comparison of known separation technologies for isolation of 99mTc from molybdenum targets. Nucl Med Biol 58:33–41

    CAS  PubMed  Google Scholar 

  24. García-Martín F, Quintanar-Audelo M, García-Ramos Y, Cruz LJ, Gravel C, Furic R, CoTé S, Tulla-Puche J, Albericio F (2006) ChemMatrix, a poly(ethylene glycol)-based support for the solid-phase synthesis of complex peptides. J Comb Chem 8:213–220

    PubMed  Google Scholar 

  25. Park BD, Lee YS (2000) The effect of PEG groups on swelling properties of PEG-grafted-polystyrene resins in various solvents. React Funct Polym 44:41–46

    CAS  Google Scholar 

  26. Mandal S, Mandal A (2014) Separation of no-carrier-added 99mTcO4- from 99Mo–99mTc equilibrium mixture by PEG based aqueous biphasic separation technique using sodium/potassium salts of citric and tartaric acid. J Radioanal Nucl Chem 299:1225–1230

    CAS  Google Scholar 

  27. Banerjee D, Kim D, Schweiger MJ, Kruger AA, Thallapally PK (2016) Removal of TcO4- ions from solution: materials and future outlook. Chem Soc Rev 45:2724–2739

    CAS  PubMed  Google Scholar 

  28. Morley TJ, Dodd Gagnon MK, Hanemaayer V, Wilson J, McQuarrie SA, English W, Ruth TJ, Bénard F, Schaffer P (2012) An automated module for the separation and purification of cyclotron-produced 99mTcO4. Nucl Med Biol 39:551–559

    CAS  PubMed  Google Scholar 

  29. Bénard F, Zeisler SK, Vuckovic M, Lin KS, Zhang Z, Colpo N, Hou X, Ruth TJ, Schaffer P (2014) Cross-linked polyethylene glycol beads to separate 99mTc-pertechnetate from low-specific-activity molybdenum. J Nucl Med 55:1910–1914

    PubMed  Google Scholar 

  30. Pawlak DW, Wojdowsk W, Parus LJ, Mikołajczak R (2016) Application of AnaLig resin for 99mTc separation from 100Mo target irradiated in cyclotron. Appl Radiat Isot 113:75–78

    CAS  PubMed  Google Scholar 

  31. Spear SK, Griffin ST, Huddleston JG, Rogers RD (2000) Radiopharmaceutical and hydrometallurgical separations of perrhenate using aqueous biphasic systems and the analogous aqueous biphasic extraction chromatographic resins. Ind Eng Chem Res 39(9):3173–3180

    CAS  Google Scholar 

  32. Andersson JD, Wilson JS, Romaniuk JA, McEwan AJB, Abrams DN, McQuarrie SA, Gagnon K (2016) Separation of [99mTc]pertechnetate and molybdate using polyethylene glycol coated C18 and C30 resins. Appl Radiat Isot 110:193–199

    CAS  PubMed  Google Scholar 

  33. Rogers RD, Bond AH, Zhang J, Horwitz EP (1997) New technetium-99m generator technologies utilizing polyethylene glycol-based aqueous biphasic systems. Sep Sci Technol 32(14):867–882

    CAS  Google Scholar 

  34. Rogers RD, Bond AH, Griffin ST, Horwitz EP (1996) New technologies for metal ion separations: aqueous biphasic extraction chromatography (ABEC). Part I uptake of pertechnetate. Solvent Extr Ion Exc 14(5):919–946

    CAS  Google Scholar 

  35. Li D, Seaman JC, Murph SEH, Kaplan DI, Taylor-Pashow K, Feng R, Chang H, Tandukar M (2019) Porous iron material for TcO4 and ReO4 sequestration from groundwater under ambient oxic conditions. J Hazard Mater 374:177–185

    CAS  PubMed  Google Scholar 

  36. Ahmed AA, Wronska A, Magiera A, Misiak R, Bartyzel M, Mietelski JW, Was B (2022) Study of 99Mo and long lived impurities produced through (p, x) reactions in the natMo. Radiat Phys Chem 190:109774

    CAS  Google Scholar 

  37. Tyminski Z, Saganowski P, Kolakowska E, Listkowska A, Ziemek T, Cacko D, Dziel T (2018) Impurities in Tc-99m radiopharmaceutical solution obtained from Mo-100 in cyclotron. Appl Radiat Isot 134:85–88

    CAS  PubMed  Google Scholar 

  38. Lebeda O, van Lier EJ, Štursa J, Ráliš J, Zyuzin A (2012) Assessment of radionuclidic impurities in cyclotron produced 99mTc. Nucl Med Biol 39:1286–1291

    CAS  PubMed  Google Scholar 

  39. Selivanova SV, Lavallée E, Senta H, Caouette L, Sader JA, van Lier EJ, Zyuzin A, van Lier JE, Guérin B, Turcotte E, Roger L (2015) Radioisotopic purity of sodium pertechnetate 99mTc produced with a medium-energy cyclotron: implications for internal radiation dose, image quality, and release specifications. J Nucl Med 56(10):1600–1608

    CAS  PubMed  Google Scholar 

  40. Hou X, Celler A, Grimes J, Bénard F, Ruth T (2012) Theoretical dosimetry estimations for radioisotopes produced by proton-induced reactions on natural and enriched molybdenum targets. Phys Med Biol 57:1499–1515

    CAS  PubMed  Google Scholar 

  41. Gagnon K, Bénard F, Kovacs M, Ruth TJ, Schaffer P, Wilson JS, McQuarrie SA (2011) Cyclotron production of 99mTc: experimental measurement of the 100Mo(p, x)99Mo, 99mTc and 99gTc excitation functions from 8 to 18 MeV. Nucl Med Biol 38:907–916

    CAS  PubMed  Google Scholar 

  42. Munir M, Sriyono Abidin Sarmini E, Saptiama I, Marlina K (2020) Development of mesoporous γ-alumina from aluminium foil waste for 99Mo/99mTc. J Radioanal Nucl Chem 326:87–96

    CAS  Google Scholar 

  43. Uccelli L, Boschi A, Pasquali M, Duatti, A, Di Domenico G, Pupillo G, Esposito J, Giganti M, Taibi, A, Gambaccini M (2013) Influence of the generator in-growth time on the final radiochemical purity and stability of radiopharmaceuticals. Sci Technol Nucl Install 2013:1–7

Download references

Acknowledgements

This research is supported by Competitive projects of the special fund for the guidance of the innovation and development of science and technology, Gansu Province. (Investigation on Preparation and Separation technology of the Medical Isotope based on the high-current Accelerator)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangli Fan.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, F., Cheng, N., Jin, Z. et al. Highly selective separation of medical isotope 99mTc from irradiated 100Mo target using PEG-based resins. J Radioanal Nucl Chem 332, 1113–1123 (2023). https://doi.org/10.1007/s10967-023-08771-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08771-1

Keywords

Navigation