Skip to main content
Log in

Trypsin-modified amidoxime improves the adsorption selectivity of uranium

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Amidoxime is publicly acknowledged well-performed uranium adsorption material at present. However, its uranium adsorption is limited due to the influence of other metal ions. Protein has abundant amino and carboxyl and has high selectivity for a specific ion. Yet, it has not been used as an adsorbent only for seawater uranium extraction. Here, amidoxime and protein are combined to fabricate a composite film material (TB@PAO) to extract uranium from seawater. The simulated seawater experiment shows that the uranyl adsorption capacity of TB@PAO is 11.24 mg·g− 1, which is 4 times vanadium adsorption and 7 times iron adsorption. The uranyl’s adsorption distribution coefficient is 1.5 × 105, suggesting TB@PAO has high uranyl adsorption affinity. This work does not only provide an adsorbent for seawater uranium extraction, but also offer a way for the design of a highly selective seawater uranium extraction material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shi S, Li B, Qian Y, Mei P, Wang N (2020) A simple and universal strategy to construct robust and anti-biofouling amidoxime aerogels for enhanced uranium extraction from seawater. Chem Eng J 397:125337

    Article  CAS  Google Scholar 

  2. Abney CW, Mayes RT, Saito T, Dai S (2017) Materials for the recovery of uranium from seawater. Chem Rev 117(23):13935–14013

    Article  CAS  PubMed  Google Scholar 

  3. Zhang Z, Dong Z, Wang X, Ying D, Niu F, Cao X et al (2018) Ordered mesoporous polymer–carbon composites containing amidoxime groups for uranium removal from aqueous solutions. Chem Eng J 341:208–217

    Article  CAS  Google Scholar 

  4. Luo W, Xiao G, Tian F, Richardson JJ, Wang Y, Zhou J et al (2019) Engineering robust metal–phenolic network membranes for uranium extraction from seawater. Energ Environ Sci 12(2):607–614

    Article  CAS  Google Scholar 

  5. Wu F, Pu N, Ye G, Sun T, Wang Z, Song Y et al (2017) Performance and mechanism of uranium adsorption from seawater to poly(dopamine)-Inspired sorbents. Environ Sci Technol 51(8):4606–4614

    Article  CAS  PubMed  Google Scholar 

  6. Zänker H, Heine K, Weiss S, Brendler V, Husar R, Bernhard G et al (2019) Strong uranium(VI) binding onto bovine milk proteins, selected protein sequences, and model peptides. Inorg Chem 58(7):4173–4189

    Article  PubMed  Google Scholar 

  7. Han X, Wang Y, Cao X, Dai Y, Liu Y, Dong Z et al (2019) Adsorptive performance of ship-type nano-cage polyoxometalates for U(VI) in aqueous solution. Appl Surf Sci 484:1035–1040

    Article  CAS  Google Scholar 

  8. Hirotsu T, Katoh S, Sugasaka K, Takai N, Seno M, Itagaki T (1987) Adsorption of uranium on cross-linked amidoxime polymer from seawater. Ind Eng Chem Res 26(10):1970–1977

    Article  CAS  Google Scholar 

  9. Kavakli PA, Seko N, Tamada M, Güven O (2005) A highly efficient chelating polymer for the adsorption of Uranyl and Vanadyl ions at low concentrations. Adsorption 10(4):309–315

    Article  Google Scholar 

  10. Yue Y, Mayes RT, Kim J, Fulvio PF, Sun X-G, Tsouris C et al (2013) Seawater uranium sorbents: preparation from a mesoporous copolymer initiator by atom-transfer radical polymerization. Angew Chem Int Ed 52(50):13458–13462

    Article  CAS  Google Scholar 

  11. Lashley MA, Mehio N, Nugent JW, Holguin E, Do-Thanh C-L, Bryantsev VS et al (2016) Amidoximes as ligand functionalities for braided polymeric materials for the recovery of uranium from seawater. Polyhedron 109:81–91

    Article  CAS  Google Scholar 

  12. Das S, Oyola Y, Mayes RT, Janke CJ, Kuo LJ, Gill G et al (2016) Extracting uranium from seawater: promising AI series adsorbents. Ind Eng Chem Res 55(15):4103–4109

    Article  CAS  Google Scholar 

  13. Earl LD, Do C, Wang Y, Abney CW (2019) Polyamidoxime chain length drives emergent metal-binding phenomena. PCCP 21(2):554–560

    Article  CAS  PubMed  Google Scholar 

  14. Pan H-B, Wai CM, Kuo L-J, Gill GA, Wang JS, Joshi R et al (2020) A highly efficient uranium grabber derived from acrylic fiber for extracting uranium from seawater. Dalton T 49(9):2803–2810

    Article  CAS  Google Scholar 

  15. Zhao S, Yuan Y, Yu Q, Niu B, Liao J, Guo Z et al (2019) A dual-surface Amidoximated halloysite nanotube for high-efficiency economical uranium extraction from seawater. Angew Chem Int Ed 58(42):14979–14985

    Article  CAS  Google Scholar 

  16. Liu R, Wen S, Sun Y, Yan B, Wang J, Chen L et al (2021) A nanoclay enhanced Amidoxime-functionalized double-network hydrogel for fast and massive uranium recovery from seawater. Chem Eng J 422:130060

    Article  CAS  Google Scholar 

  17. Kim J, Tsouris C, Oyola Y, Janke CJ, Mayes RT, Dai S et al (2014) Uptake of uranium from seawater by Amidoxime-based polymeric adsorbent: field experiments, modeling, and updated economic assessment. Ind Eng Chem Res 53(14):6076–6083

    Article  CAS  Google Scholar 

  18. Parker BF, Zhang Z, Leggett CJ, Arnold J, Rao L (2017) Kinetics of complexation of V(v), U(vI), and Fe(III) with glutaroimide-dioxime: studies by stopped-flow and conventional absorption spectroscopy. Dalton Trans 46(33):11084–11096

    Article  CAS  PubMed  Google Scholar 

  19. Das S, Brown S, Mayes RT, Janke CJ, Tsouris C, Kuo LJ et al (2016) Novel poly(imide dioxime) sorbents: development and testing for enhanced extraction of uranium from natural seawater. Chem Eng J 298:125–135

    Article  CAS  Google Scholar 

  20. Wang D, Song J, Wen J, Yuan Y, Liu Z, Lin S et al (2018) Significantly enhanced uranium extraction from seawater with mass produced fully amidoximated nanofiber adsorbent. Adv Energy Mater 8(33):1802607

    Article  Google Scholar 

  21. Gill GA, Kuo L-J, Janke CJ, Park J, Jeters RT, Bonheyo GT et al (2016) The uranium from seawater program at the Pacific Northwest National Laboratory: overview of marine testing, adsorbent characterization, adsorbent durability, adsorbent toxicity, and deployment studies. Ind Eng Chem Res 55(15):4264–4277

    Article  CAS  Google Scholar 

  22. Ladshaw AP, Ivanov AS, Das S, Bryantsev VS, Tsouris C, Yiacoumi S (2018) First-principles Integrated adsorption modeling for selective capture of uranium from seawater by polyamidoxime sorbent materials. ACS Appl Mater Int 10(15):12580–12593

    Article  CAS  Google Scholar 

  23. Seko N, Tamada M, Yoshii F (2005) Current status of adsorbent for metal ions with radiation grafting and crosslinking techniques. Nucl Instrum Methods B 236(1):21–29

    Article  CAS  Google Scholar 

  24. Gomez-Maldonado D, Erramuspe IBV, Peresin MS (2019) Natural polymers as alternative adsorbents and treatment agents for Water remediation. BioResources 14:10093–10160

    Article  Google Scholar 

  25. Zhou L, Bosscher M, Zhang C, Özçubukçu, Salih, Zhang L, Zhang W et al (2014) A protein engineered to bind uranyl selectively and with femtomolar affinity. Nat Chem 6(3):236

    Article  CAS  PubMed  Google Scholar 

  26. Odoh SO, Bondarevsky GD, Karpus J, Cui Q, He C, Spezia R et al (2014) UO22 + uptake by proteins: understanding the binding features of the Super Uranyl-Binding protein (SUP) and design of a protein with higher Affinity. J Am Chem Soc 136(50):17484–17494

    Article  CAS  PubMed  Google Scholar 

  27. Li W, Liu Q, Liu J, Zhang H, Li R, Li Z et al (2017) Removal U(VI) from artificial seawater using facilely and covalently grafted polyacrylonitrile fibers with lysine. Appl Surf Sci 403:378–388

    Article  CAS  Google Scholar 

  28. Tian G, Teat SJ, Rao L (2013) Thermodynamic studies of U(vi) complexation with glutardiamidoxime for sequestration of uranium from seawater. Dalton Trans 42(16):5690–5696

    Article  CAS  PubMed  Google Scholar 

  29. Li W, Liu Y-Y, Bai Y, Wang J, Pang H (2020) Anchoring ZIF-67 particles on amidoximerized polyacrylonitrile fibers for radionuclide sequestration in wastewater and seawater. J Hazard Mater 395:122692

    Article  CAS  PubMed  Google Scholar 

  30. Wang F, Li H, Liu Q, Li Z, Li R, Zhang H et al (2016) A graphene oxide/amidoxime hydrogel for enhanced uranium capture. Sci Rep-UK 6(1):19367

    Article  CAS  Google Scholar 

  31. Yang J, Volesky B (1999) Biosorption of uranium on sargassum biomass. Water Res 33(15):3357–3363

    Article  CAS  Google Scholar 

  32. Wang H, Yao H, Chen L, Yu Z, Yang L, Li C et al (2020) Highly efficient capture of uranium from seawater by layered double hydroxide composite with benzamidoxime. Sci Total Environ 759:143483

    Article  PubMed  Google Scholar 

  33. Panias D, Krestou A (2004) Uranium (VI) speciation diagrams in the UO22+/CO32-/H2O system at 25°C. Eur J Mineral Process Environ Prot 4:113–129

    Google Scholar 

  34. Zuo L, Peng W, Xu Z, Guo H, Luo M (2022) Selective adsorption of uranyl by glutamic acid-modified amidoxime fiber. React Funct Polym 179:105376

    Article  CAS  Google Scholar 

  35. Wegner SV, Boyaci H, Chen H, Jensen MP, He C (2009) Engineering A Uranyl-specific binding protein from NikR. Angew Chem Int Ed 48(13):2339–2341

    Article  CAS  Google Scholar 

  36. Bolotin DS, Bokach NA, Kukushkin VY (2016) Coordination chemistry and metal-involving reactions of amidoximes: relevance to the chemistry of oximes and oxime ligands. Coord Chem Rev 313:62–93

    Article  CAS  Google Scholar 

  37. Kuo L-J, Janke CJ, Wood JR, Strivens JE, Das S, Oyola Y et al (2016) Characterization and testing of Amidoxime-based adsorbent materials to extract uranium from natural seawater. Ind Eng Chem Res 55(15):4285–4293

    Article  CAS  Google Scholar 

  38. Xie S, Liu X, Zhang B, Ma H, Ling C, Yu M et al (2015) Electrospun nanofibrous adsorbents for uranium extraction from seawater. J Mater Chem A 3(6):2552–2558

    Article  CAS  Google Scholar 

  39. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR et al (2016) Gaussian 16. Revision A, 3rd edn. Gaussian, Wallingford

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 22065002), The State Key Laboratory for Nuclear Resources and Environment, (East China Institute of Technology) (Nos. NRE2021-16, 2020NRE31).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingbiao Luo.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 19 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, L., Guo, H., Xu, Z. et al. Trypsin-modified amidoxime improves the adsorption selectivity of uranium. J Radioanal Nucl Chem 332, 713–722 (2023). https://doi.org/10.1007/s10967-023-08770-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08770-2

Keywords

Navigation