Skip to main content
Log in

Adsorption of radioactive cobalt(II) in the groundwater-soil systems surrounding the effluent pipeline of a proposed NPP in China

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Radioactive cobalt release poses concerns since the attention to radiation safety. In this work, soil and groundwater sampled from the surroundings of the long-distance pipeline of a proposed nuclear power plant were used to assess radiation safety by studying Co(II) adsorption. The Freundlich and Langmuir models fitted the experimental data well. The results indicated that Co adsorption was an entropy-driven, spontaneous, endothermic and chemical process. The adsorption mechanism was mainly the inner-sphere complexation, and CoSO4(aq) contributed to the partially reversible occurrence. This study provided fundamental information about the environmental behaviours and adsorption mechanism of radioactive Co(II) surrounding the effluent pipeline.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kong TY, Kim S, Lee Y, Son JK, Maeng SJ (2017) Radioactive effluents released from Korean nuclear power plants and the resulting radiation doses to members of the public. Nucl Eng Technol 49:1772–1777. https://doi.org/10.1016/j.net.2017.07.021

    Article  CAS  Google Scholar 

  2. Rimkevicius S, Kaliatka A, Valincius M, Dundulis G, Janulionis R, Grybenas A, Zutautaite I (2012) Development of approach for reliability assessment of pipeline network systems. Appl Energy 94:22–33. https://doi.org/10.1016/j.apenergy.2012.01.015

    Article  Google Scholar 

  3. Trávníček P, Junga P, Kotek L, Vítěz T (2022) Analysis of accidents at municipal wastewater treatment plants in Europe. J Loss Prevent Process Ind 74:104634. https://doi.org/10.1016/j.jlp.2021.104634

    Article  Google Scholar 

  4. Ernest Miyombo M, Liu Y-K, Yaw Amanyi Angu N, Ayodeji A (2022) Minimum dose path planning during reactor coolant system maintenance with corrosion product activity. Nucl Eng Design 396:111897. https://doi.org/10.1016/j.nucengdes.2022.111897

    Article  CAS  Google Scholar 

  5. Huang Y-J, Zeng F, Jiang J, Wu L-S, Shang-Guan Z-H, Zhu Z-W, Liu X-H, Zhang B, Zuo W-W (2021) A statistical evaluation of the liquid effluent release from NPP based on analytical methods with low detection limits. J Radioanal Nucl Chem 327:801–810. https://doi.org/10.1007/s10967-020-07569-9

    Article  CAS  Google Scholar 

  6. Abbas MN, Al-Tameemi IM, Hasan MB, Al-Madhhachi A-ST (2021) Chemical removal of cobalt and lithium in contaminated soils using promoted white eggshells with different catalysts. S Afr J Chem Eng 35:23–32. https://doi.org/10.1016/j.sajce.2020.11.002

    Article  Google Scholar 

  7. Islam MA, Morton DW, Johnson BB, Pramanik BK, Mainali B, Angove MJ (2018) Opportunities and constraints of using the innovative adsorbents for the removal of cobalt(II) from wastewater: a review. Environ Nanotechnol Monit Manag 10:435–456. https://doi.org/10.1016/j.enmm.2018.10.003

    Article  Google Scholar 

  8. Abbasi S, Foroutan R, Esmaeili H, Esmaeilzadeh F (2019) Preparation of activated carbon from worn tires for removal of Cu (II), Ni (II) and Co (II) ions from synthetic wastewater. Desalin Water Treat 141:269–278. https://doi.org/10.5004/dwt.2019.23569

    Article  CAS  Google Scholar 

  9. Foroutan R, Peighambardoust SJ, Ahmadi A, Akbari A, Farjadfard S, Ramavandi B (2021) Adsorption mercury, cobalt, and nickel with a reclaimable and magnetic composite of hydroxyapatite/Fe3O4/polydopamine. J Environ Chem Eng 9:105709. https://doi.org/10.1016/j.jece.2021.105709

    Article  CAS  Google Scholar 

  10. Foroutan R, Esmaeili H, Abbasi M, Rezakazemi M, Mesbah M (2018) Adsorption behavior of Cu(II) and Co(II) using chemically modified marine algae. Environ Technol 39:2792–2800. https://doi.org/10.1080/09593330.2017.1365946

    Article  CAS  PubMed  Google Scholar 

  11. Yan Y, Wan B, Mansor M, Wang X, Zhang Q, Kappler A, Feng X (2022) Co-sorption of metal ions and inorganic anions/organic ligands on environmental minerals: a review. Sci Total Environ 803:149918. https://doi.org/10.1016/j.scitotenv.2021.149918

    Article  CAS  PubMed  Google Scholar 

  12. Novikau R, Lujanienė G, Pakštas V, Talaikis M, Mažeika K, Drabavičius A, Naujokaitis A, Šemčuk S (2022) Adsorption of caesium and cobalt ions on the muscovite mica clay-graphene oxide-γ-Fe2O3-Fe3O4 composite. Environ Sci Pollut Res 29:74933–74950. https://doi.org/10.1007/s11356-022-21078-0

    Article  CAS  Google Scholar 

  13. Woodward GL, Peacock CL, Otero-Fariña A, Thompson OR, Brown AP, Burke IT (2018) A universal uptake mechanism for cobalt(II) on soil constituents: ferrihydrite, kaolinite, humic acid, and organo-mineral composites. Geochim Cosmochim Acta 238:270–291. https://doi.org/10.1016/j.gca.2018.06.035

    Article  CAS  Google Scholar 

  14. Tran EL, Teutsch N, Klein-BenDavid O, Weisbrod N (2018) Uranium and Cesium sorption to bentonite colloids under carbonate-rich environments: implications for radionuclide transport. Sci Total Environ 643:260–269. https://doi.org/10.1016/j.scitotenv.2018.06.162

    Article  CAS  PubMed  Google Scholar 

  15. Yuan G, Tian Y, Liu J, Tu H, Liao J, Yang J, Yang Y, Wang D, Liu N (2017) Schiff base anchored on metal-organic framework for Co (II) removal from aqueous solution. Chem Eng J 326:691–699. https://doi.org/10.1016/j.cej.2017.06.024

    Article  CAS  Google Scholar 

  16. Zhang L, Wei J, Zhao X, Li F, Jiang F, Zhang M, Cheng X (2016) Competitive adsorption of strontium and cobalt onto tin antimonate. Chem Eng J 285:679–689. https://doi.org/10.1016/j.cej.2015.10.013

    Article  CAS  Google Scholar 

  17. Guo S-S, Wu H, Tian Y-Q, Chen H-X, Wang Y, Yang J-Y (2021) Migration and fate of characteristic pollutants migration from an abandoned tannery in soil and groundwater by experiment and numerical simulation. Chemosphere 271:129552. https://doi.org/10.1016/j.chemosphere.2021.129552

    Article  CAS  PubMed  Google Scholar 

  18. Zhang Y, Li X, Chen X, Koivula R, Xu J (2022) Tunnel manganese oxides prepared using recovered LiMn2O4 from spent lithium-ion batteries: co adsorption behavior and mechanism. J Hazard Mater 425:127957. https://doi.org/10.1016/j.jhazmat.2021.127957

    Article  CAS  PubMed  Google Scholar 

  19. Jalali M, Majeri M (2016) Cobalt sorption–desorption behavior of calcareous soils from some Iranian soils. Geochemistry 76:95–102. https://doi.org/10.1016/j.chemer.2015.11.004

    Article  CAS  Google Scholar 

  20. Mosai AK, Tokwana BC, Tutu H (2022) Computer simulation modelling of the simultaneous adsorption of Cd, Cu and Cr from aqueous solutions by agricultural clay soil: a PHREEQC geochemical modelling code coupled to parameter estimation (PEST) study. Ecol Model 465:109872. https://doi.org/10.1016/j.ecolmodel.2022.109872

    Article  CAS  Google Scholar 

  21. Lee S, Han J, Ro H-M (2022) Mechanistic insights into Cd(II) and As(V) sorption on Miscanthus biochar at different pH values and pyrolysis temperatures. Chemosphere 287:132179. https://doi.org/10.1016/j.chemosphere.2021.132179

    Article  CAS  PubMed  Google Scholar 

  22. Fan Q, Shao D, Lu Y, Wu W, Wang X (2009) Effect of pH, ionic strength, temperature and humic substances on the sorption of Ni(II) to Na–attapulgite. Chem Eng J 150:188–195. https://doi.org/10.1016/j.cej.2008.12.024

    Article  CAS  Google Scholar 

  23. Hamed MM, Aly MI, Nayl AA (2016) Kinetics and thermodynamics studies of cobalt, strontium and caesium sorption on marble from aqueous solution. Chem Ecol 32:68–87. https://doi.org/10.1080/02757540.2015.1112379

    Article  CAS  Google Scholar 

  24. Bangash MA, Hanif J, Khan MA (1992) Sorption behavior of cobalt on illitic soil. Waste Manage 12:29–38. https://doi.org/10.1016/0956-053X(92)90006-5

    Article  CAS  Google Scholar 

  25. Yavuz Ö, Altunkaynak Y, Güzel F (2003) Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite. Water Res 37:948–952. https://doi.org/10.1016/S0043-1354(02)00409-8

    Article  CAS  PubMed  Google Scholar 

  26. El-Sofany EA, Zaki AA, Mekhamer HS (2009) Kinetics and thermodynamics studies for the removal of Co2+ and Cs+ from aqueous solution by sand and clay soils. Radiochim Acta 97:23–32. https://doi.org/10.1524/ract.2009.1573

    Article  CAS  Google Scholar 

  27. Kara M, Yuzer H, Sabah E, Celik MS (2003) Adsorption of cobalt from aqueous solutions onto sepiolite. Water Res 37:224–232. https://doi.org/10.1016/S0043-1354(02)00265-8

    Article  CAS  PubMed  Google Scholar 

  28. Luo D, Geng R, Zhang Y, Li P, Liang J, Fan Q, Qiang S (2022) Interaction behaviors of Cr(VI) at biotite-water interface in the presence of HA: batch XRD and XPS investigations. Chemosphere 293:133585. https://doi.org/10.1016/j.chemosphere.2022.133585

    Article  CAS  PubMed  Google Scholar 

  29. Foroutan R, Peighambardoust SJ, Mohammadi R, Peighambardoust SH, Ramavandi B (2022) Cadmium ion removal from aqueous media using banana peel biochar/Fe3O4/ZIF-67. Environ Res 211:113020. https://doi.org/10.1016/j.envres.2022.113020

    Article  CAS  PubMed  Google Scholar 

  30. Savari A, Hashemi S, Arfaeinia H, Dobaradaran S, Foroutan R, Mahvi AH, Fouladvand M, Sorial GA, Farjadfard S, Ramavandi B (2020) Physicochemical characteristics and mechanism of fluoride removal using powdered zeolite-zirconium in modes of pulsed & continuous sonication and stirring. Adv Powder Technol 31:3521–3532. https://doi.org/10.1016/j.apt.2020.06.039

    Article  CAS  Google Scholar 

  31. Foroutan R, Peighambardoust SJ, Mohammadi R, Peighambardoust SH, Ramavandi B (2022) Development of new magnetic adsorbent of walnut shell ash/starch/Fe3O4 for effective copper ions removal: treatment of groundwater samples. Chemosphere 296:133978. https://doi.org/10.1016/j.chemosphere.2022.133978

    Article  CAS  PubMed  Google Scholar 

  32. Foroutan R, Peighambardoust SJ, Hemmati S, Ahmadi A, Falletta E, Ramavandi B, Bianchi CL (2021) Zn2+ removal from the aqueous environment using a polydopamine/hydroxyapatite/Fe3O4 magnetic composite under ultrasonic waves. RSC Adv 11:27309–27321. https://doi.org/10.1039/D1RA04583K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ligate F, Lucca E, Ijumulana J, Irunde R, Kimambo V, Mtamba J, Ahmad A, Hamisi R, Maity JP, Mtalo F, Bhattacharya P (2022) Geogenic contaminants and groundwater quality around Lake Victoria goldfields in northwestern Tanzania. Chemosphere 307:135732. https://doi.org/10.1016/j.chemosphere.2022.135732

    Article  CAS  PubMed  Google Scholar 

  34. Tsamo C, Yerima NE, Mua EN (2022) Evaluation of the transport and mobility of Co(II) in soils from agricultural, waste dump and an automobile repair shop sites in Bambili–Cameroon. Environ Chem Ecotoxicol 4:29–36. https://doi.org/10.1016/j.enceco.2021.12.001

    Article  CAS  Google Scholar 

  35. Uddin MK (2017) A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem Eng J 308:438–462. https://doi.org/10.1016/j.cej.2016.09.029

    Article  CAS  Google Scholar 

  36. Wallace SH, Shaw S, Morris K, Small JS, Fuller AJ, Burke IT (2012) Effect of groundwater pH and ionic strength on strontium sorption in aquifer sediments: Implications for 90Sr mobility at contaminated nuclear sites. Appl Geochem 27:1482–1491. https://doi.org/10.1016/j.apgeochem.2012.04.007

    Article  CAS  Google Scholar 

  37. Chandrasekaran A, Ravisankar R, Rajalakshmi A, Eswaran P, Vijayagopal P, Venkatraman B (2015) Assessment of natural radioactivity and function of minerals in soils of Yelagiri hills, Tamilnadu, India by Gamma Ray spectroscopic and Fourier Transform Infrared (FTIR) techniques with statistical approach. Spectrochim Acta Part A Mol Biomol Spectrosc 136:1734–1744. https://doi.org/10.1016/j.saa.2014.10.075

    Article  CAS  Google Scholar 

  38. Pooni J, Robert D, Giustozzi F, Setunge S, Xie YM, Xia J (2020) Novel use of calcium sulfoaluminate (CSA) cement for treating problematic soils. Constr Build Mater 260:120433. https://doi.org/10.1016/j.conbuildmat.2020.120433

    Article  CAS  Google Scholar 

  39. Payne TE, Itakura T, Comarmond MJ, Harrison JJ (2009) Environmental mobility of cobalt—influence of solid phase characteristics and groundwater chemistry. Appl Radiat Isot 67:1269–1276. https://doi.org/10.1016/j.apradiso.2009.02.026

    Article  CAS  PubMed  Google Scholar 

  40. Handley-Sidhu S, Mullan TK, Grail Q, Albadarneh M, Ohnuki T, Macaskie LE (2016) Influence of pH, competing ions and salinity on the sorption of strontium and cobalt onto biogenic hydroxyapatite. Sci Rep 6:23361. https://doi.org/10.1038/srep23361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yantasee W, Warner CL, Sangvanich T, Addleman RS, Carter TG, Wiacek RJ, Fryxell GE, Timchalk C, Warner MG (2007) Removal of heavy metals from aqueous systems with thiol functionalized superparamagnetic nanoparticles. Environ Sci Technol 41:5114–5119. https://doi.org/10.1021/es0705238

    Article  CAS  PubMed  Google Scholar 

  42. Atugoda T, Wijesekara H, Werellagama DRIB, Jinadasa KBSN, Bolan NS, Vithanage M (2020) Adsorptive interaction of antibiotic ciprofloxacin on polyethylene microplastics: Implications for vector transport in water. Environ Technol Innov 19:100971. https://doi.org/10.1016/j.eti.2020.100971

    Article  Google Scholar 

  43. Lee J, Park S-M, Jeon E-K, Baek K (2017) Selective and irreversible adsorption mechanism of cesium on illite. Appl Geochem 85:188–193. https://doi.org/10.1016/j.apgeochem.2017.05.019

    Article  CAS  Google Scholar 

  44. Bilgiç C (2005) Investigation of the factors affecting organic cation adsorption on some silicate minerals. J Colloid Interface Sci 281:33–38. https://doi.org/10.1016/j.jcis.2004.08.038

    Article  CAS  PubMed  Google Scholar 

  45. Zeng H, Sun S, Xu K, Zhao W, Hao R, Zhang J, Li D (2022) Iron-loaded magnetic alginate-chitosan double-gel interpenetrated porous beads for phosphate removal from water: preparation, adsorption behavior and pH stability. React Funct Poly 177:105328. https://doi.org/10.1016/j.reactfunctpolym.2022.105328

    Article  CAS  Google Scholar 

  46. Kiriukhin MY, Collins KD (2002) Dynamic hydration numbers for biologically important ions. Biophys Chem 99:155–168. https://doi.org/10.1016/s0301-4622(02)00153-9

    Article  CAS  PubMed  Google Scholar 

  47. Zhang W, Xu F, Wang Y, Luo M, Wang D (2014) Facile control of zeolite NaA dispersion into xanthan gum–alginate binary biopolymer network in improving hybrid composites for adsorptive removal of Co2+ and Ni2+. Chem Eng J 255:316–326. https://doi.org/10.1016/j.cej.2014.06.024

    Article  CAS  Google Scholar 

  48. Maziarz P, Matusik J, Leiviskä T, Strączek T, Kapusta C, Marek Woch W, Tokarz W, Górniak K (2019) Toward highly effective and easily separable halloysite-containing adsorbents: the effect of iron oxide particles impregnation and new insight into As(V) removal mechanisms. Sep Purif Technol 210:390–401. https://doi.org/10.1016/j.seppur.2018.08.012

    Article  CAS  Google Scholar 

  49. Ibrahim A-R, Zhou Y, Li X, Chen L, Hong Y, Su Y, Wang H, Li J (2015) Synthesis of rod-like hydroxyapatite with high surface area and pore volume from eggshells for effective adsorption of aqueous Pb(II). Mater Res Bull 62:132–141. https://doi.org/10.1016/j.materresbull.2014.11.023

    Article  CAS  Google Scholar 

  50. Dou S, Ke X-X, Shao Z-D, Zhong L-B, Zhao Q-B, Zheng Y-M (2022) Fish scale-based biochar with defined pore size and ultrahigh specific surface area for highly efficient adsorption of ciprofloxacin. Chemosphere 287:131962. https://doi.org/10.1016/j.chemosphere.2021.131962

    Article  CAS  PubMed  Google Scholar 

  51. Foroutan R, Jamaleddin Peighambardoust S, Amarzadeh M, Kiani Korri A, Sadat Peighambardoust N, Ahmad A, Ramavandi B (2022) Nickel ions abatement from aqueous solutions and shipbuilding industry wastewater using ZIF-8-chicken beak hydroxyapatite. J Mol Liquids 356:119003. https://doi.org/10.1016/j.molliq.2022.119003

    Article  CAS  Google Scholar 

  52. Ahmadi A, Foroutan R, Esmaeili H, Peighambardoust SJ, Hemmati S, Ramavandi B (2022) Montmorillonite clay/starch/CoFe2O4 nanocomposite as a superior functional material for uptake of cationic dye molecules from water and wastewater. Mater Chem Phys 284:126088. https://doi.org/10.1016/j.matchemphys.2022.126088

    Article  CAS  Google Scholar 

  53. Khalili FI, Salameh NH, Shaybe MM (2013) Sorption of uranium(VI) and thorium(IV) by jordanian bentonite. J Chem

  54. Tan IAW, Ahmad AL, Hameed BH (2009) Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon. J Hazard Mater 164:473–482. https://doi.org/10.1016/j.jhazmat.2008.08.025

    Article  CAS  PubMed  Google Scholar 

  55. Gao P, Feng Y, Zhang Z, Wang C, Liu J, Ren N (2012) Kinetic and thermodynamic studies of phenolic compounds’ adsorption on river sediment. Soil Sedim Contamin Int J 21:625–639. https://doi.org/10.1080/15320383.2012.672490

    Article  CAS  Google Scholar 

  56. Kyzas GZ, Deliyanni EA, Matis KA (2016) Activated carbons produced by pyrolysis of waste potato peels: cobalt ions removal by adsorption. Colloids Surf A 490:74–83. https://doi.org/10.1016/j.colsurfa.2015.11.038

    Article  CAS  Google Scholar 

  57. Sheng G, Dong H, Li Y (2012) Characterization of diatomite and its application for the retention of radiocobalt: role of environmental parameters. J Environ Radioact 113:108–115. https://doi.org/10.1016/j.jenvrad.2012.05.011

    Article  CAS  PubMed  Google Scholar 

  58. Omar H, Arida H, Daifullah A (2009) Adsorption of 60Co radionuclides from aqueous solution by raw and modified bentonite. Appl Clay Sci 44:21–26. https://doi.org/10.1016/j.clay.2008.12.013

    Article  CAS  Google Scholar 

  59. Zhao X, Jiang T, Du B (2014) Effect of organic matter and calcium carbonate on behaviors of cadmium adsorption–desorption on/from purple paddy soils. Chemosphere 99:41–48. https://doi.org/10.1016/j.chemosphere.2013.09.030

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Foundation of China General Nuclear Power Corporation [Grant No. 45000-71021220], Pinnacle project of key technology of seawater cooling tower in nuclear power plant of CGNPC and National Natural Science Foundation of China [Grant Nos. 41773095 and 21906187].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hanyu Wu or Mingliang Kang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Lin, Q., Chen, Y. et al. Adsorption of radioactive cobalt(II) in the groundwater-soil systems surrounding the effluent pipeline of a proposed NPP in China. J Radioanal Nucl Chem 332, 1287–1302 (2023). https://doi.org/10.1007/s10967-023-08762-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08762-2

Keywords

Navigation