Skip to main content
Log in

Formation of MPd3 + x (M = Gd, Np) by the reaction of MN with Pd and chlorination of MPd3 + x using cadmium chloride

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The formation of MPd3 + x (M = Gd, Np) by the reaction of MN with Pd at 1323 K in Ar gas flow was observed. Cubic AuCu3-type GdPd3.3 (a = 0.4081 ± 0.0001 nm) and NpPd3 (a = 0.4081 ± 0.0001 nm) were identified, respectively. The product obtained from the reaction of NpN with Pd contained additional phases, including the hexagonal TiNi3-type NpPd3. Chlorination of the MPd3 + x (M = Gd, Np) samples was accomplished by the solid-state reaction using cadmium chloride at 673 K in a dynamic vacuum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Nishihara K et al (2008) Impact of partitioning and transmutation on LWR high-level waste disposal. J Nucl Sci Technol 45:84–97

    Article  CAS  Google Scholar 

  2. Oigawa H et al (2011) Role of ADS in the back-end of the fuel cycle strategies and associated design activities: the case of Japan. J Nucl Mater 415:229–236

    Article  CAS  Google Scholar 

  3. Nishihara K et al (2008) Neutronics design of accelerator-driven system for power flattening and beam current reduction. J Nucl Sci Technol 45:812–822

    Article  CAS  Google Scholar 

  4. Tateno H, Sato T, Tsubata Y, Hayashi H (2020) Material balance evaluation of pyroprocessing for minor actinide transmutation nitride fuel. J Nucl Sci Technol 57:224–235

    Article  CAS  Google Scholar 

  5. Chandrasekhariah MS (1985) Oxygen potential and the chemical state of the fission products ruthenium, rhodium and palladium in irradiated oxide fuels. J Nucl Mater 130:366–374

    Article  CAS  Google Scholar 

  6. Nevolin I et al (2022) Oxidation studies of UM3 (M = Ru, Rh, Pd) intermetallides. J Nucl Mater 568:153885

    Article  CAS  Google Scholar 

  7. Matzke Hj (1986) Science of Advanced LMFBR Fuels, North Holland, pp.428–461

  8. Arai Y (2012) 3.02 Nitride fuel. In: Konings RJM (ed) Comprehensive Nuclear materials. Elsevier, Amsterdam, pp 41–54

    Chapter  Google Scholar 

  9. Arai Y et al (1994) Chemical forms of solid fission products in the irradiated uranium–plutonium mixed nitride fuel. J Nucl Mater 210:161–166

    Article  CAS  Google Scholar 

  10. Wijbenga G et al (1982) Determination of standard Gibbs energies of formation of URh3 and URu3 by solid-state e.m.f. measurements. J Chem Thermodynam 14:409–417

    Article  CAS  Google Scholar 

  11. Cordfunke EHP et al (1985) Thermodynamics of uranium intermetallic compounds I. Heat capacity of URu3 and URh3 from 5 to 850 K. J Chem Thermodynam 17:1035–1044

    Article  CAS  Google Scholar 

  12. Burriel R et al (1988) Thermodynamics of uranium intermetallic compounds II. Heat capacity of UPd3 from 8 to 850 K. J Chem Thermodynam 20:815–823

    Article  CAS  Google Scholar 

  13. Uno M, Kurosaki K, Nakamura A (1997) Reactions of uranium nitride with platinum-family metals. J Nucl Mater 247:322–327

    Article  CAS  Google Scholar 

  14. Kurosaki K, Uno M (1998) Phase equilibria in the ternary URu3–URh3–UPd3 system. J Alloys Compd 271–273:641–644

    Article  Google Scholar 

  15. Kurosaki K, Uno M (1998) Formation of the Cu3Au type solid solution of UPd3 by doping a small amount of URu3. J Alloys Compd 274:222–228

    Article  CAS  Google Scholar 

  16. Kleykamp H, Pejsa R (1984) X-ray diffraction studies on irradiated nuclear fuels. J Nucl Mater 124:56–63

    Article  CAS  Google Scholar 

  17. Piro MHA et al (2020) 2.07 Fission product chemistry in oxide fuels. In: Konings RJM, Stoller RE (eds) Comprehensive nuclear materials, vol 2, 2nd edn. Elsevier, Amsterdam, pp 173–199

    Chapter  Google Scholar 

  18. Wang L-C, Kaye MH (2021) The other metallic phase in spent nuclear fuel: a complete thermodynamic evaluation of the U–Pd–Rh–Ru system. J Nucl Eng Rad Sci 7:011601

    Article  CAS  Google Scholar 

  19. Kleykamp H (1985) The chemical state of the fission products in oxide fuels. J Nucl Mater 131:221–246

    Article  CAS  Google Scholar 

  20. Satoh T et al (2009) Electrolysis of burnup-simulated uranium nitride fuels in LiCl–KCl eutectic melts. J Nucl Sci Technol 46:557–563

    Article  CAS  Google Scholar 

  21. Satoh T et al (2012) Development of the process flow diagram of the pyrochemical reprocessing of spent nitride fuel for ADS. in Actinide and fission product partitioning and transmutation eleventh information exchange meeting, San Francisco, California, USA, 1–4 November 2010 (NEA(Ed.)), OECD Publishing, Paris, ISBN 978–92–64–99174–3 (poster session contribution) https://www.oecd-nea.org/pt/iempt11/poster/IV-14.pdf Accessed 16 November 2022.

  22. Shirai O et al (2000) Recovery of neptunium by electrolysis of NpN in LiCl–KCl eutectic melts. J Nucl Sci Technol 37:676–681

    Article  CAS  Google Scholar 

  23. Capelli E, Konings RJM (2020) 7.07 Halides of the actinides and fission products relevant for molten salt reactors. In: Konings RJM, Stoller RE (eds) Comprehensive nuclear materials, vol 7, 2nd edn. Elsevier, Amsterdam, p 267

    Google Scholar 

  24. Hayashi H, Takano M, Akabori M, Minato K (2008) Synthesis of americium trichloride by the reaction of americium nitride with cadmium chloride. J Alloys Compd 456:243–246

    Article  CAS  Google Scholar 

  25. Hayashi H, Takano M, Kurata M, Minato K (2013) Synthesis of neptunium trichloride and measurements of its melting temperature. J Nucl Mater 440:477–479

    Article  CAS  Google Scholar 

  26. Hayashi H, Takano M, Otobe H, Koyama T (2013) Syntheses and thermal analyses of curium trichloride. J Radioanal Nucl Chem 297:139–144

    Article  CAS  Google Scholar 

  27. Norman M, Harris IR (1969) A study of some α palladium–scandium, –zirconium and –gadolinium alloys. J Less-common Met 18:333–345

    Article  CAS  Google Scholar 

  28. Malic SK, Dhar SK, Vijayaraghavan R (1984) Structural and magnetic investigations of some new boron containing rare earth intermetallic compounds. Bull Mater Sci 6(2):263–272; Gates-Rector S, Blanton T (2019) The Powder Diffraction File: a quality materials characterization database. Powder Diffr 34:352–360, PDF 03-065-0203

  29. Nellis WJ et al (1972) Crystal data on two phases of NpPd3. J Appl Cryst 5:306–307

    Article  CAS  Google Scholar 

  30. Nellis WJ et al (1974) Magnetic properties of NpPd3 and PuPd3 intermetallic compounds. Phys Rev B 9:1041–1051

    Article  CAS  Google Scholar 

  31. Gates-Rector S, Blanton T (2019) The Powder Diffraction File: a quality materials characterization database. Powder Diffr 34:352–360, PDF 01-072-2684; calculated from ref. 30

  32. Gates-Rector S, Blanton T (2019) The Powder Diffraction File: a quality materials characterization database. Powder Diffr 34:352–360, PDF 01-081-7037; calculated from ref. 30

  33. Takano M (2013) Experimental evaluation of solid solubility of lanthanide and transuranium nitrides into ZrN matrix. J Nucl Mater 440:489–494

    Article  CAS  Google Scholar 

  34. Minato K, Akabori M, Tsuboi T, Kurobane S, Hayashi H, Takano M, Otobe H, Misumi M, Sakamoto T, Kato I, Hida T (2005) Development of module for TRU high temperature chemistry (joint research). JAERI-Tech 2005-059 (in Japanese)

  35. Miura H (2003) Cell Calc: a unit cell parameter refinement program on windows computer. J Cryst Soc Jpn 45:145–147 (in Japanese)

    Article  Google Scholar 

  36. Olson WM, Mulford RNR (1966) The melting point and decomposition pressure of neptunium mononitride. J Phys Chem 70:2932–2934

    Article  CAS  Google Scholar 

  37. Loebich O, Raub E (1973) Die legierungen des palladiums mit yttrium, samarium, gadolinium, dysprosium, holmium und erbium. J Less-common Met 30:47–62 (in German)

    Article  CAS  Google Scholar 

  38. Massalski TB et al (eds) (1990) Binary alloy phase diagrams. ASM International, Materials Park, Ohio, pp 1908–1909

    Google Scholar 

  39. Provino A et al (2016) New R3Pd5 compounds (R = Sc, Y, Gd–Lu): formation and stability, crystal structure, and antiferromagnetism. Cryst Growth Des 16:6001–6015

    Article  CAS  Google Scholar 

  40. Erdmann B, Keller C (1973) Actinide(lanthanide)–noble metal alloy phases, preparation and properties. J Solid State Chem 7:40–48

    Article  CAS  Google Scholar 

  41. Kutaitsev VI et al (1965) Phase diagrams of plutonium with the metals of group IIA, IVA, VIIIA and IB, Plutonium 1965, in Proceedings of the third international conference on plutonium, London, Chapman and Hall, pp.420–449

  42. Massalski TB et al (eds) (1990) Binary alloy phase diagrams. ASM International, Materials Park, Ohio, pp 3033–3035

    Google Scholar 

  43. Kurata M (2012) 2.05 Phase diagrams of actinide alloys. In: Konings RJM (ed) Comprehensive nuclear materials, vol 2. Elsevier, Amsterdam, p 179

    Google Scholar 

  44. Walker HC et al (2007) Magnetic and electrical properties of dhcp NpPd3 and (U1−xNpx)Pd3. Phys Rev B 76:174437

    Article  Google Scholar 

  45. Eloirdi R et al (2011) Synthesis and characterization of large single crystals of NpPd3 by flux method. J Cryst Growth 320:52–54

    Article  CAS  Google Scholar 

  46. Gates-Rector S, Blanton T (2019) The Powder Diffraction File: a quality materials characterization database. Powder Diffr 34:352–360, PDF 00-046-1043

  47. Au C, Au R (1967) The structure of GdCl3. Acta Cryst 23:1112; Gates-Rector S, Blanton T (2019) The Powder Diffraction File: a quality materials characterization database. Powder Diffr 34:352–360, PDF 01-072-0078

  48. Massalski TB et al (eds) (1990) Binary alloy phase diagrams. ASM International, Materials Park, Ohio, pp 1011–1012

    Google Scholar 

  49. Platt JN, Myles KM, Darby JB Jr, Mueller MH (1968) X-ray studies of palladium–cadmium and palladium-antimony alloys. J Less-common Met 14:427–433

    Article  Google Scholar 

  50. Gates-Rector S, Blanton T (2019) The Powder Diffraction File: a quality materials characterization database. Powder Diffr 34:352–360, PDF 01-071-6840; calculated from ref. 49

  51. Nowtony H, Stempfl A, Bittner H (1951) Zur kenntnis des systems palladium–kadmium. Monatsh Chem 82:949–958 (in German)

    Article  Google Scholar 

  52. Gates-Rector S, Blanton T (2019) The Powder Diffraction File: a quality materials characterization database. Powder Diffr 34:352–360, PDF 00-006-0570; calculated from ref. 49

  53. Gates-Rector S, Blanton T (2019) The Powder Diffraction File: a quality materials characterization database. Powder Diffr 34:352–360, PDF 00-005-0674

  54. Gates-Rector S, Blanton T (2019) The Powder Diffraction File: a quality materials characterization database. Powder Diffr 34:352–360, PDF 01-089-1568

  55. Koyama T, Uozumi K, Iizuka M, Sakamura Y, Kinoshita K (1994) Pyrometallurgy Data Book, Komae Research Laboratory Rep. No. T93033, Central Research Institute of Electric Power Industry (in Japanese)

  56. Piacente V et al (2003) Vapor pressures and sublimation enthalpies of gadolinium trichloride, tribromide, and triiodide and terbium trichloride, tribromide, and triiodide. J Chem Eng Data 48:637–645

    Article  CAS  Google Scholar 

  57. Darby JB Jr, Myles KM, Platt JN (1971) The thermodynamic properties of solid palladium-rich Pd–Cd, Pd–In, Pd–Sn and Pd–Sb alloys. Acta Metall 19:7–14

    Article  CAS  Google Scholar 

  58. Kulkarni SG et al (1990) Vapor pressure of Pd(g) measured over Pd(s) by Knudsen effusion cell mass spectrometry. J Less-common Met 160:133–141

    Article  CAS  Google Scholar 

  59. Gates-Rector S, Blanton T (2019) The Powder Diffraction File: a quality materials characterization database. Powder Diffr 34:352–360, PDF 01-077-0171

Download references

Acknowledgements

Most of the present study was conducted under the “R&D on Nitride Fuel Cycle for MA Transmutation to Enhance Safety and Economy” entrusted to Japan Atomic Energy Agency by the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT). The authors thank Dr. M. Takano for management of the study program and advise on the experiments. The authors also thank Dr. S. Takaki of JAEA, Mr. A. Ito, Mr. R. Chiba, Mr. Y. Kumagami, and Ms. M. Saito of Nuclear Engineering Co. Ltd. (NECO) for their technical support.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: HH, TS; Methodology: HH, HS, TS; Investigation: HH, HS, TS, HO; Formal analysis: HH; Writing –original draft preparation: HH; Writing –review & editing: HS, TS, HO.

Corresponding author

Correspondence to Hirokazu Hayashi.

Ethics declarations

Conflict of interest

The authors have no competing interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayashi, H., Shibata, H., Sato, T. et al. Formation of MPd3 + x (M = Gd, Np) by the reaction of MN with Pd and chlorination of MPd3 + x using cadmium chloride. J Radioanal Nucl Chem 332, 503–510 (2023). https://doi.org/10.1007/s10967-023-08760-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08760-4

Keywords

Navigation