Skip to main content
Log in

Essential role of the interlayer of montmorillonite, vermiculite, and illite for Ni(II) sorption

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this study, the essential roles of the interlayer of montmorillonite, vermiculite, and illite were explored during the sorption of Ni(II) using batch, X-ray diffraction (XRD), and surface complexation model. In the NaCl solution, the sorption of Ni(II) followed the order of montmorillonite ≈ vermiculite > illite. However, in the CsCl solution, Ni(II) sorption on montmorillonite and vermiculite became much lower. XRD patterns and the release experiments of Cs+ have confirmed that the interlayer of montmorillonite partially collapsed after being equilibrated with Cs+ and Na+, which is a reversible process. For vermiculite, Na+ could induce a partial and reversible collapse of the interlayer; however, Cs+ caused a complete and irreversible collapse. The surface complexation model showed that the ion exchange and surface complexes were the primary sorption mechanism for Ni(II) sorption on the clay minerals. The interlayer has a vital contribution to Ni(II) sorption on montmorillonite and vermiculite, especially to the ion exchange, which is very important to more accurately understand the environmental behaviors of radionuclides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fan QH, Tanaka K, Sakaguchi A, Kondo H, Watanabe N, Takahashi Y (2014) Appl Geochem 48:93

    Article  CAS  Google Scholar 

  2. Fan QH, Tanaka M, Tanaka K, Sakaguchi A, Takahashi Y (2014) Geochim Cosmochim Acta 135:49

    Article  CAS  Google Scholar 

  3. Fan QH, Yamaguchi N, Tanaka M, Tsukada H, Takahashi Y (2014) J Environ Radioact 138:92

    Article  CAS  PubMed  Google Scholar 

  4. Fan Q, Li P, Pan D (2019) Interface Sci Technol 29:1

    Article  CAS  Google Scholar 

  5. Onda Y, Taniguchi K, Yoshimura K, Kato H, Takahashi J, Wakiyama Y, Coppin F, Smith H (2020) Nat Rev Earth Environ 1:644

    Article  CAS  Google Scholar 

  6. Bing H, Wu Y, Liu E, Yang X (2013) J Environ Sci 25:1300

    Article  CAS  Google Scholar 

  7. Kumwimba MN, Zhu B, Suanon F, Muyembe DK, Dzakpasu M (2017) Sci Total Environ 581:773

    Article  PubMed  Google Scholar 

  8. Cui QL, Zhang ZQ, Beiyuan JZ, Cui YX, Chen L, Chen HS, Fang LC (2022). Crit Rev Environ Sci Technol. https://doi.org/10.1080/10643389.2022.2054246

    Article  Google Scholar 

  9. Sheng G, Yang S, Sheng J, Hu J, Tan X, Wang X (2011) Environ Sci Technol 45:7718

    Article  CAS  PubMed  Google Scholar 

  10. Qiang S, Han B, Zhao X, Yang Y, Shao D, Li P, Liang J, Fan Q (2017) Sci Rep 7:46744

    Article  PubMed  PubMed Central  Google Scholar 

  11. Borst AM, Smith MP, Finch AA, Estrade G, Villanova-de-Benavent C, Nason P, Marquis E, Horsburgh NJ, Goodenough KM, Xu C, Kynicky J, Geraki K (2020) Nat Commun 11:4386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dewey C (2020) Water quality in dynamic redox environments: coupled hydrologic-biogeochemical controls on metal contaminant mobility. Stanford University, Ann Arbor, p 200

    Google Scholar 

  13. Antoniadis V, McKinley JD (2003) Environ Chem Lett 1:103

    Article  CAS  Google Scholar 

  14. Huang B, Yuan Z, Li D, Zheng M, Nie X, Liao Y (2020) Environ Sci-Proc Imp 22:1596

    CAS  Google Scholar 

  15. Amde M, Liu JF, Tan ZQ, Bekana D (2017) Environ Pollut 230:250

    Article  CAS  PubMed  Google Scholar 

  16. Shi M, Min X, Ke Y, Lin Z, Yang Z, Wang S, Peng N, Yan X, Luo S, Wu J, Wei Y (2021) Sci Total Environ 752:141930

    Article  CAS  PubMed  Google Scholar 

  17. Xu Y, Liang XF, Xu YM, Qin X, Huang QQ, Wang L, Sun YB (2017) Pedosphere 27:193

    Article  CAS  Google Scholar 

  18. Abollino O, Giacomino A, Malandrino M, Mentasti E (2008) Appl Clay Sci 38:227

    Article  CAS  Google Scholar 

  19. Zhang C, Liu XD, Lu XC, He MJ, Meijer EJ, Wang RC (2017) Geochim Cosmochim Acta 203:54

    Article  Google Scholar 

  20. Zhang C, Liu X, Lu X, Meijer EJ, Wang R (2019) Environ Sci Technol 53:13704

    Article  CAS  PubMed  Google Scholar 

  21. Tournassat C, Tinnacher RM, Grangeon S, Davis JA (2018) Geochim Cosmochim Acta 220:291

    Article  CAS  Google Scholar 

  22. Bourg IC, Sposito G, Bourg AM (2007) Environ Sci Technol 41:8118

    Article  CAS  PubMed  Google Scholar 

  23. Tan XL, Fang M, Wang XK (2010) Molecules 15:8431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang YY, Zhao HG, Fan QH, Zheng XB, Li P, Liu SP, Wu WS (2011) J Radioanal Nucl Chem 288:95

    Google Scholar 

  25. Wu HY, Qiang SR, Fan QH, Zhao XL, Liu P, Li P, Liang JJ, Wu WS (2018) Appl Clay Sci 152:295

    Article  CAS  Google Scholar 

  26. Chen L, Dong YH (2013) J Radioanal Nucl Chem 295:2117

    Article  CAS  Google Scholar 

  27. Han B, He BH, Geng RY, Zhao XL, Li P, Hang JJ, Fan QH (2019) J Mol Liq 274:362

    Article  CAS  Google Scholar 

  28. Yang ST, Li JX, Lu Y, Chen YX, Wang XK (2009) Appl Radiat Isot 67:1600

    Article  CAS  PubMed  Google Scholar 

  29. Zhao X, Qiang S, Wu H, Yang Y, Shao D, Fang L, Liang J, Li P, Fan Q (2017) Sci Rep 7:8495

    Article  PubMed  PubMed Central  Google Scholar 

  30. Baeyens B, Bradbury MH (1997) J Contam Hydrol 27:199

    Article  CAS  Google Scholar 

  31. Donat R, Akdogan A, Erdem E, Cetisli H (2005) J Colloid Interf Sci 286:43

    Article  CAS  Google Scholar 

  32. Li Z, Dong H, Zhang Y, Li J, Li Y (2017) J Colloid Interf Sci 497:43

    Article  CAS  Google Scholar 

  33. Yu SJ, Wang XX, Chen ZS, Tan XL, Wang HQ, Hu J, Alsaedi A, Alharbi NS, Guo W, Wang XK (2016) Chem Eng J 302:77

    Article  CAS  Google Scholar 

  34. Schnurr A, Marsac R, Rabung T, Lutzenkirchen J, Geckeis H (2015) Geochim CosmochimActa 151:192

    Article  CAS  Google Scholar 

  35. Bradbury MH, Baeyens B (2009) Geochim Cosmochim Acta 73:990

    Article  CAS  Google Scholar 

  36. Ikhsan J, Wells JD, Johnson BB, Angove MJ (2005) Colloids Surf A 252:33

    Article  CAS  Google Scholar 

  37. Motokawa R, Endo H, Yokoyama S, Nishitsuji S, Kobayashi T, Suzuki S, Yaita T (2014) Sci Rep 4:6585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wu L, Liao L, Lv G (2015) J Colloid Interf Sci 454:1

    Article  CAS  Google Scholar 

  39. Fuller AJ, Shaw S, Ward MB, Haigh SJ, Mosselmans JFW, Peacock CL, Stackhouse S, Dent AJ, Trivedi D, Burke IT (2015) Appl Clay Sci 108:128

    Article  CAS  Google Scholar 

  40. Bradbury MH, Baeyens B (1997) J Contam Hydrol 28:11

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the National Natural Science Foundation of China (21876172), the Youth Innovation Promotion Association of CAS, Gansu Talent and Intelligence Center for Remediation of Closed and Old Deposits, and the Key Laboratory Project of Gansu Province (1309RTSA041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiaohui Fan.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, B., Zhang, X., Liu, C. et al. Essential role of the interlayer of montmorillonite, vermiculite, and illite for Ni(II) sorption. J Radioanal Nucl Chem 332, 1315–1323 (2023). https://doi.org/10.1007/s10967-023-08759-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08759-x

Keywords

Navigation