Skip to main content
Log in

Co-transport of colloidal MgAl-LDH and U(VI) in saturated granite particle column: role of colloid concentration, ionic strength, pH and flow rate

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Since little is known about the colloidal Layered double hydroxides (LDH) stability and how colloidal LDH influences U(VI) transport, column experiments were performed to study the co-transport of U(VI) and MgAl-LDH colloids in water-saturated granite particle as a function of important environmental factors. It was found that the stability and transport of U(VI)-bearing LDH colloid was affacted by colloid concentration, ionic strength and pH. A two-site kinetic attachment/detachment model was applied to describe the breakthrough curves of U(VI)-bearing LDH colloid. The experimental and modeling results of this study imply that a risk assessment of LDH colloid facilitated transport should be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen S, Wei X, Liu J, Sun Z, Chen G, Yang M, Liu Y, Wang D, Ma C, Kong D (2022) Weak acid leaching of uranium ore from a high carbonate uranium deposit. J Radioanal Nucl Chem 331:2583–2596. https://doi.org/10.1007/s10967-022-08323-z

    Article  CAS  Google Scholar 

  2. Kacham AR, Suri AK (2014) Application of a topochemical reaction model to predict leaching behavior of high carbonate uranium ores in alkaline solutions: an experimental case study. Hydrometallurgy 141:67–75. https://doi.org/10.1016/j.hydromet.2013.10.005

    Article  CAS  Google Scholar 

  3. Smirnov KM, Molchanova TV, Akimova ID, Krylova OK (2018) Efficient technology for combined processing of silicate and carbonate uranium ores. At Energy 124:111–117. https://doi.org/10.1007/s10512-018-0383-8

    Article  CAS  Google Scholar 

  4. Zhang X, Ji L, Wang J, Li R, Liu Q, Zhang M, Liu L (2012) Removal of uranium(VI) from aqueous solutions by magnetic Mg–Al layered double hydroxide intercalated with citrate: kinetic and thermodynamic investigation. Colloids Surf A Physicochem Eng Asp 414:220–227. https://doi.org/10.1016/j.colsurfa.2012.08.031

    Article  CAS  Google Scholar 

  5. Yang Y, Saiers JE, Xu N, Minasian SG, Tyliszczak T, Kozimor SA, Shuh DK, Barnett MO (2012) Impact of natural organic matter on uranium transport through saturated geologic materials: from molecular to column scale. Environ Sci Technol 46:5931–5938. https://doi.org/10.1021/es300155j

    Article  CAS  PubMed  Google Scholar 

  6. Chen C, Zhao K, Shang J, Liu C, Wang J, Yan Z, Liu K, Wu W (2018) Uranium (VI) transport in saturated heterogeneous media: influence of kaolinite and humic acid. Environ Pollut 240:219–226. https://doi.org/10.1016/j.envpol.2018.04.095

    Article  CAS  PubMed  Google Scholar 

  7. Wang Q, Cheng T, Wu Y (2014) Influence of mineral colloids and humic substances on uranium(VI) transport in water-saturated geologic porous media. J Contam Hydrol 170:76–85. https://doi.org/10.1016/j.jconhyd.2014.10.007

    Article  CAS  PubMed  Google Scholar 

  8. Niu Z, Wei X, Qiang S, Wu H, Pan D, Wu W, Fan Q (2019) Spectroscopic studies on U(VI) incorporation into CaCO3: effects of aging time and U(VI) concentration. Chemosphere 220:1100–1107. https://doi.org/10.1016/j.chemosphere.2019.01.010

    Article  CAS  PubMed  Google Scholar 

  9. IAEA (2004) Treatment of liquid effluent from uranium mines and mills. Report of a co-ordinated research project 1996–2000. International Atomic Energy Agency, Vienna, pp 95–102

    Google Scholar 

  10. Yang J, Zhang Z, Chen Z, Ge M, Wu W, Guo Z (2019) Co-transport of U(VI) and gibbsite colloid in saturated granite particle column: role of pH, U(VI) concentration and humic acid. Sci Total Environ 688:450–461. https://doi.org/10.1016/j.scitotenv.2019.05.395

    Article  CAS  PubMed  Google Scholar 

  11. Möri A, Alexander WR, Geckeis H, Hauser W, Schäfer T (2003) The colloid and radionuclide retardation experiment at the Grimsel Test Site: influence of bentonite colloids on radionuclide migration in a fractured rock. Colloids Surf A Physicochem Eng Asp 217:33–47. https://doi.org/10.1016/S0927-7757(02)00556-3

    Article  CAS  Google Scholar 

  12. Ge M, Wang D, Yang J, Jin Q, Chen Z, Wu W, Guo Z (2018) Co-transport of U(VI) and akaganeite colloids in water-saturated porous media: role of U(VI) concentration, pH and ionic strength. Water Res 147:350–361. https://doi.org/10.1016/j.watres.2018.10.004

    Article  CAS  PubMed  Google Scholar 

  13. Zhang Z, Heng J, Jin Q, Chen Z, Wu W, Guo Z (2022) Co-transport of bentonite colloid and U(VI) in particulate granite column: role of colloid concentration, ionic strength, pH and flow rate. Radiochim Acta. https://doi.org/10.1515/ract-2021-1096

    Article  Google Scholar 

  14. Sun Y, Zhang Z, Heng J, Jin Q, Chen Z, Guo Z (2022) Co-transport of U(VI) and colloidal biochar in quartz sand heterogeneous media. Sci Total Environ 816:151606. https://doi.org/10.1016/j.scitotenv.2021.151606

    Article  CAS  PubMed  Google Scholar 

  15. Wang D, Paradelo M, Bradford SA, Peijnenburg WJ, Chu L, Zhou D (2011) Facilitated transport of Cu with hydroxyapatite nanoparticles in saturated sand: effects of solution ionic strength and composition. Water Res 45:5905–5915. https://doi.org/10.1016/j.watres.2011.08.041

    Article  CAS  PubMed  Google Scholar 

  16. Liao L, Zhao N, Xia Z (2012) Hydrothermal synthesis of Mg–Al layered double hydroxides (LDHs) from natural brucite and Al(OH)3. Mater Res Bull 47:3897–3901. https://doi.org/10.1016/j.materresbull.2012.07.007

    Article  CAS  Google Scholar 

  17. Li C, Wei Y, Wang X, Yin X (2018) Efficient and rapid adsorption of iodide ion from aqueous solution by porous silica spheres loaded with calcined Mg-Al layered double hydroxide. J Taiwan Inst Chem Eng 85:193–200. https://doi.org/10.1016/j.jtice.2018.01.044

    Article  CAS  Google Scholar 

  18. Kasel D, Bradford SA, Simunek J, Heggen M, Vereecken H, Klumpp E (2013) Transport and retention of multi-walled carbon nanotubes in saturated porous media: effects of input concentration and grain size. Water Res 47:933–944. https://doi.org/10.1016/j.watres.2012.11.019

    Article  CAS  PubMed  Google Scholar 

  19. Jiang X, Zhang M, Yan B, Hu J, Chen J, Guan Y (2019) Roles of Mg-Al layered double hydroxides and solution chemistry on P transport in soil. Chem Eng J 373:1111–1119. https://doi.org/10.1016/j.cej.2019.05.083

    Article  CAS  Google Scholar 

  20. Rahman MT, Kameda T, Kumagai S, Yoshioka T (2016) Adsorption isotherms and kinetics of arsenic removal from aqueous solution by Mg–Al layered double hydroxide intercalated with nitrate ions. React Kinet Mech Catal 120:703–714. https://doi.org/10.1007/s11144-016-1116-4

    Article  CAS  Google Scholar 

  21. Zhang X, Zhang M, Li R, Feng X, Pang X, Rao J, Cong D, Yin C, Zhang Y (2021) Active corrosion protection of Mg–Al layered double hydroxide for magnesium alloys: a short review. Coatings. https://doi.org/10.3390/coatings11111316

    Article  Google Scholar 

  22. Paikaray S, Gomez MA, Jim Hendry M, Essilfie-Dughan J (2014) Formation mechanism of layered double hydroxides in Mg2+-, Al3+-, and Fe3+-rich aqueous media: implications for neutralization in acid leach ore milling. Appl Clay Sci 101:579–590. https://doi.org/10.1016/j.clay.2014.09.022

    Article  CAS  Google Scholar 

  23. Kasatkin AV, Britvin SN, Krzhizhanovskaya MG (2022) Kaznakhtite, Ni6Co3+2(CO3)(OH)16⋅4H2O, a new natural layered double hydroxide, the member of the hydrotalcite supergroup. Mineral Mag 86:841–848. https://doi.org/10.1180/mgm.2022.65

    Article  Google Scholar 

  24. Paikaray S, Essilfie-Dughan J, Hendry MJ (2018) Ionic substitution of Mg2+ for Al3+ and Fe3+ with octahedral coordination in hydroxides facilitate precipitation of layered double hydroxides. Geochim Cosmochim Acta 220:217–234. https://doi.org/10.1016/j.gca.2017.10.003

    Article  CAS  Google Scholar 

  25. Bouali AC, Serdechnova M, Blawert C, Tedim J, Ferreira MGS, Zheludkevich ML (2020) Layered double hydroxides (LDHs) as functional materials for the corrosion protection of aluminum alloys: a review. Appl Mater Today. https://doi.org/10.1016/j.apmt.2020.100857

    Article  Google Scholar 

  26. Huo J, Min X, Dong Q, Xu S, Wang Y (2022) Comparison of Zn-Al and Mg-Al layered double hydroxides for adsorption of perfluorooctanoic acid. Chemosphere 287:132297. https://doi.org/10.1016/j.chemosphere.2021.132297

    Article  CAS  PubMed  Google Scholar 

  27. Benhiti R, Ait Ichou A, Zaghloul A, Aziam R, Carja G, Zerbet M, Sinan F, Chiban M (2020) Synthesis, characterization, and comparative study of MgAl-LDHs prepared by standard coprecipitation and urea hydrolysis methods for phosphate removal. Environ Sci Pollut Res Int 27:45767–45774. https://doi.org/10.1007/s11356-020-10444-5

    Article  CAS  PubMed  Google Scholar 

  28. Ye H (2021) Autogenous formation and smart behaviors of nitrite- and nitrate-intercalated layered double hydroxides (LDHs) in Portland cement-metakaolin-dolomite blends. Cem Concr Res. https://doi.org/10.1016/j.cemconres.2020.106267

    Article  Google Scholar 

  29. Yin Q, Lyu P, Wang G, Wang B, Li Y, Zhou Z, Guo Y, Li L, Deng N (2022) Phosphorus-modified biochar cross-linked Mg-Al layered double-hydroxide stabilizer reduced U and Pb uptake by Indian mustard (Brassica juncea L.) in uranium contaminated soil. Ecotoxicol Environ Saf 234:113363. https://doi.org/10.1016/j.ecoenv.2022.113363

    Article  CAS  PubMed  Google Scholar 

  30. Yin L, Hu Y, Ma R, Wen T, Wang X, Hu B, Yu Z, Hayat T, Alsaedi A, Wang X (2019) Smart construction of mesoporous carbon templated hierarchical Mg-Al and Ni-Al layered double hydroxides for remarkably enhanced U(VI) management. Chem Eng J 359:1550–1562. https://doi.org/10.1016/j.cej.2018.11.017

    Article  CAS  Google Scholar 

  31. Jana A, Unni A, Ravuru SS, Das A, Das D, Biswas S, Sheshadri H, De S (2022) In-situ polymerization into the basal spacing of LDH for selective and enhanced uranium adsorption: a case study with real life uranium alkaline leach liquor. Chem Eng J. https://doi.org/10.1016/j.cej.2021.131180

    Article  Google Scholar 

  32. Zhang Z, Gao P, Montavon G, Chen Z, Wang D, Tan Z, Jin Q, Wu W, Wang J, Guo Z (2022) Strengthened erosion resistance of compacted bentonite by layered double hydroxide: a new electrostatic interaction-based approach. Chemosphere 292:133402. https://doi.org/10.1016/j.chemosphere.2021.133402

    Article  CAS  PubMed  Google Scholar 

  33. Liu Y (2005) Synthesis and application of layered double hydroxides. Chem Ind Times 19:59–62. https://doi.org/10.16597/j.cnki.issn.1002-154x.2005.12.019

    Article  CAS  Google Scholar 

  34. Cao Y, Zheng D, Zhang F, Pan J, Lin C (2022) Layered double hydroxide (LDH) for multi-functionalized corrosion protection of metals: a review. J Mater Sci Technol 102:232–263. https://doi.org/10.1016/j.jmst.2021.05.078

    Article  Google Scholar 

  35. Zolgharnein J, Jerdi AS, Azimi GG, Jahanbakhsh (2009) Spectrophotometric determination of trace amounts of fluoride using an Al-xylenol orange complex as a colored reagent. Anal Sci 25:1249–1253

    Article  CAS  PubMed  Google Scholar 

  36. Guo Z, Li Y, Wu W (2009) Sorption of U(VI) on goethite: effects of pH, ionic strength, phosphate, carbonate and fulvic acid. Appl Radiat Isot 67:996–1000. https://doi.org/10.1016/j.apradiso.2009.02.001

    Article  CAS  PubMed  Google Scholar 

  37. Šimůnek J, Genuchten MT (2008) Modeling nonequilibrium flow and transport processes using HYDRUS. Vadose Zone J 7:782–797. https://doi.org/10.2136/vzj2007.0074

    Article  CAS  Google Scholar 

  38. Liu Q, Xu S, Liu J (2008) Comparison between kaolinite and SiO2 colloidin transport behavior in saturated porous media. Acta Pedol Sin 45:446–451

    Google Scholar 

  39. Sun H, Wang Y (2010) Study on effect of clay mineral colloid on the environmental behavior of Pb. Northwest A&F Universit

  40. Kretzschmar R, Borkovec M, Grolimund D, Elimelech M (1999) Mobile subsurface colloids and their role in contaminant transport. In: Advances in agronomy, vol 66, pp 121–193. https://doi.org/10.1016/s0065-2113(08)60427-7

  41. Cai L, Tong M, Ma H, Kim H (2013) Cotransport of titanium dioxide and fullerene nanoparticles in saturated porous media. Environ Sci Technol 47:5703–5710. https://doi.org/10.1021/es400256d

    Article  CAS  PubMed  Google Scholar 

  42. Yang J, Guo Z, Chen Z (2019) The effects of gibbsite colloids and humic acid on U(VI) transport through saturated porous media. Lanzhou University

  43. Dittrich TM, Boukhalfa H, Ware SD, Reimus PW (2015) Laboratory investigation of the role of desorption kinetics on americium transport associated with bentonite colloids. J Environ Radioact 148:170–182. https://doi.org/10.1016/j.jenvrad.2015.07.001

    Article  CAS  PubMed  Google Scholar 

  44. Nguyen THD, Zhang Z, Mustapha A, Li H, Lin M (2014) Use of graphene and gold nanorods as substrates for the detection of pesticides by surface enhanced Raman spectroscopy. J Agric Food Chem 62:10445–10451. https://doi.org/10.1021/jf5036417

    Article  CAS  PubMed  Google Scholar 

  45. Torkzaban S, Bradford SA, Vanderzalm JL, Patterson BM, Harris B, Prommer H (2015) Colloid release and clogging in porous media: effects of solution ionic strength and flow velocity. J Contam Hydrol 181:161–171. https://doi.org/10.1016/j.jconhyd.2015.06.005

    Article  CAS  PubMed  Google Scholar 

  46. Torkzaban SB, Walker SA, Sharon L (2007) Resolving the coupled effects of hydrodynamics and DLVO forces on colloid attachment in porous media. Am Chem Soc 23:9625–9660. https://doi.org/10.1021/la700995e

    Article  CAS  Google Scholar 

  47. Jiang Y, Lin G (2013) Migration-deposition of Nano-hydroxyapatite and induced removal of Manganese in Ground water. Ocean University of China

  48. Simunek JS, Saito M, Sakai H, van Genuchten MT (2008) The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media. Department of Environmental Science, vol Version 4.16. University of California Riverside, Riverside, California

  49. Wang D, Su C, Zhang W, Hao X, Cang L, Wang Y, Zhou D (2014) Laboratory assessment of the mobility of water-dispersed engineered nanoparticles in a red soil (Ultisol). J Hydrol 519:1677–1687. https://doi.org/10.1016/j.jhydrol.2014.09.053

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant Nos. 22176079, 21806064, 21906074), the Natural Science Foundation of Gansu Province, China (Nos. 22JR5RA480, 21JR7RA513), and Fundamental Research Funds for the Central Universities (lzujbky-2021-32, lzujbky-2022-sp05).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Jin or Zongyuan Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Hou, H., Gao, G. et al. Co-transport of colloidal MgAl-LDH and U(VI) in saturated granite particle column: role of colloid concentration, ionic strength, pH and flow rate. J Radioanal Nucl Chem 332, 1181–1191 (2023). https://doi.org/10.1007/s10967-022-08737-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08737-9

Keywords

Navigation