Skip to main content
Log in

Creation of a nitrosamine library labelled with 14C or tritium

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Cancer continues to be a leading cause of global death despite decades of research on its prevention and cure. In the mid-twentieth century, anecdotal evidence began to accumulate that certain chemicals might be cancer-causing and this was followed up with animal model studies. These suspected substances were termed carcinogens and among those investigated were N-nitrosamines (or simply nitrosamines). Interest in nitrosamines is now more than a century old and research continues to explore their biology. Since the 1950’s, steady progress has been made in perfecting chemistry techniques to label interesting compounds with 14C or tritium. However, there have been relatively few reports concerning the synthesis of nitrosamines with these radioisotopes, providing substances which could be valuable in advancing key nitrosamine biology research. Most of the previous literature examples of 14C or tritium labelled nitrosamines related to very specific compounds lacking wider interest and relevance. Also, the resulting products were usually of low specific activity. This paper outlines strategies to accomplish the labelling of more broadly relevant nitrosamines with 14C or tritium at high specific activity. Particularly, a library of 14C labelled nitrosamines with diverse structures was created. Exemplary experimental details are provided for the synthesis of [14C] N-nitrosodiethanolamine as well as the repurification of [ethyl-1-14C] N-nitroso-N-ethylurea. The storage and general stability of 14C nitrosamines is also discussed. Finally, as an example of a typical strategy to prepare a nitrosamine labelled with tritium, the synthesis of [3, 4-3H] N-nitrosopyrrolidine is described in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nagai H, Kim YH (2017) Cancer prevention from the perspective of global cancer burden patterns. J Thorac Dis 9:448–451

    Article  Google Scholar 

  2. Irigaray P, Belpomme D (2010) Basic properties and molecular mechanisms of exogenous chemical carcinogens. Carcinogenesis 31:135–148

    Article  CAS  Google Scholar 

  3. Jansen JD (1917) Nitro derivatives of alkyl toluidines, and the relation between their molecular refractions and those of similar compounds. Proc R Acad. Amst. 19:564–576

    CAS  Google Scholar 

  4. Beard JC, Swager TM (2021) An organic chemist’s guide to N-nitrosamines: their structure, reactivity, and role as contaminants. J Org Chem 86:2037–2057

    Article  CAS  Google Scholar 

  5. Barnes JM, Magee PN (1954) Some toxic properties of dimethylnitrosamine. Br J Ind Med 11:167–174

    CAS  Google Scholar 

  6. Magee PN, Barnes JM (1956) The production of malignant primary hepatic tumours in the rat by feeding dimethylnitrosamine. Br J Cancer 10:114–122

    Article  CAS  Google Scholar 

  7. Tricker AR, Preussmann R (1991) Carcinogenic N-nitrosamines in the diet: occurrence, formation, mechanisms and carcinogenic potential. Mutat Res Genet Toxicol 259:277–289

    Article  CAS  Google Scholar 

  8. Krasner SW, Mitch WA, McCurry DL, Hanigan D, Westerhoff P (2013) Formation, precursors, control, and occurrence of nitrosamines in drinking water: a review. Water Res 47:4433–4450

    Article  CAS  Google Scholar 

  9. Voges R, Heys JR, Moenius T (2009) Preparation of compounds labeled with tritium and carbon-14 Wiley. John Wiley & Sons Ltd, Chichester, UK

    Book  Google Scholar 

  10. Pilgeram LO, Gal EM, Sassenrath EN, Greenberg DM (1953) Metabolic studies with ethanolamine-1, 2–14C. J Biol Chem 204:367–377

    Article  CAS  Google Scholar 

  11. Hansen T, Iwaoka WT, Archer MC (1974) A high-yield synthesis of 14C-labelled nitrosoproline and nitrososarcosine. J Label Compd Radiopharm 10:689–692

    Article  CAS  Google Scholar 

  12. Hu MW, Bondinell WE, Hoffmann D (1974) Chemical studies on tobacco smoke XXIII. Synthesis of carbon-14 labelled myosmine, nornicotine and N’-nitrosonornicotine. J Label Compd Radiopharm 10:79–88

    Article  CAS  Google Scholar 

  13. Kupper R, Nagel D, Gingell R, Brunk G (1978) Synthesis of 14C-labeled N-nitrosobis (2-hydroxypropyl)amine. J Label Compd Radiopharm 15:175–179

    Article  CAS  Google Scholar 

  14. Braun H, Wiessler M (1978) Synthesis of 14C-labelled nitrosamines. IV. Synthesis of 14C-methyl-(1-acetoxy)methyl nitrosamine and 1–14C-ethyl(acetoxy)ethyl nitrosamine. J Label Compd Radiopharm 14:887–892

    Article  CAS  Google Scholar 

  15. Roller PP, Keefer LK, Bradford WW, Reist EJ (1981) Synthesis, analysis, and stability studies of 14C-methyl(acetoxymethyl)nitrosamine. J Label Compd Radiopharm 18:1261–1272

    Article  CAS  Google Scholar 

  16. Searle NE, Cupery HE (1954) Synthesis of carbon-14 labeled 3-(p-chlorophenyl)-1, 1-dimethylurea. J Org Chem 19:1622–1627

    Article  CAS  Google Scholar 

  17. Barnes RD (1974) The synthesis of 14C-diethylamine and lysergic acid diethylamide. J Label Compd Radiopharm 10:207–212

    Article  CAS  Google Scholar 

  18. Stoll A, Rutschmann J, Hofmann A (1954) Ergot alkaloids XXXIV. The synthesis of 14C-diethylamine and 14C-lysergic acid diethylamide. Helv Chim Acta 37:820–824

    Article  CAS  Google Scholar 

  19. Wilson MR, O’Donohue SI, Walker NA (1988) The transport and metabolism of urea in Chara australis: III. Two specific transport systems. J Exp Bot 39:763–774

    Article  CAS  Google Scholar 

  20. Wilson MR (1985) A study of urea transport and metabolism in Chara australis. Dissertation, University of Sydney, Australia

  21. Heard RDH, Jamieson JR, Solomon S (1951) The synthesis of methylamine-14C and diazomethane-14C. J Am Chem Soc 73:4985–4986

    Article  CAS  Google Scholar 

  22. McKay AF, Wright GF (1947) Preparation and properties of N-methyl-N-nitroso-N’-nitroguanidine. J Am Chem Soc 69:3028–3030

    Article  CAS  Google Scholar 

  23. Walts JM, Kessler WV, Christian JE (1967) Synthesis of pyrrolidine-2-14C. J Pharm Sci 56:900–902

    Article  CAS  Google Scholar 

  24. Ren S, McNamara P, Royster P, Lee J, Saluja SS, Koharski D, Hendershot S, Truong V (2007) Synthesis of 14C-labeled piperidines and application to synthesis of [14C] SCH 351125, a CCR5 receptor antagonist. J Label Compd Radiopharm 50:643–648

    Article  CAS  Google Scholar 

  25. Herbert M, Jimeno de Osso F, Pichat L (1972) Preparation of 2, 5-diketopiperazine-2, 5–14C and its reduction to piperazine-2, 5–14C. J Label Compd Radiopharm 8:45–52

    Article  CAS  Google Scholar 

  26. den Braver MW, Schakel DJ, Hendriks HS, Schuur AG, Brand W, Sijm DTHM, Bouma K (2021) Monitoring and risk assessment of hazardous chemicals in toy-slime and putty in the Netherlands. Regul Toxicol Pharmacol 125:105000

    Article  CAS  Google Scholar 

  27. Galloway JD, Sarabia C, Fettinger JC, Hratchian HP, Baxter RD (2021) Versatile new reagent for nitrosation under mild conditions. Org Lett 23:3253–3258

    Article  CAS  Google Scholar 

  28. Andersen JR, Batsberg W, Carlsen L, Egsgaard H, Larsen E, Senning A (1980) N-Nitrosodiethanolamine revisited. Biomed Mass Spectrom 7:205–210

    Article  CAS  Google Scholar 

  29. Karabatsos GJ, Taller RA (1964) Structural studies by nuclear magnetic resonance. IX. Configurations and conformations of N-nitrosamines. J Am Chem Soc 86:4373–4378

    Article  CAS  Google Scholar 

  30. Chow YL (1967) Photochemistry of nitroso compounds in solution. V. Photolysis of N-nitrosodialkylamines. Can J Chem 45:53–62

    Article  CAS  Google Scholar 

  31. Cerda-Olmedo E, Hanawalt PC (1968) Diazomethane as the active agent in nitrosoguanidine mutagenesis and lethality. Mol Gen Genet 101:191–202

    Article  CAS  Google Scholar 

  32. Desai D, Lin G, Morimoto H, Williams PG, El-Bayoumy K, Amin S (2002) Synthesis of (+/-) [5-3H] N’-nitrosoanatabine, a tobacco-specific nitrosamine. J Label Compd Radiopharm 45:1133–1141

    Article  CAS  Google Scholar 

  33. Peterson LA, Spratt TE, Shan W, Wang L, Subotkowski W, Roth R (2001) An improved synthesis of radiolabeled 4-(acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanone. J Label Compd Radiopharm 44:445–450

    Article  CAS  Google Scholar 

  34. Peterson LA, Carmella SG, Hecht SS (1990) Investigations of metabolic precursors to hemoglobin and DNA adducts of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Carcinogenesis 11:1329–1333

    Article  CAS  Google Scholar 

  35. Wiley JC, Chien DHT, Nungesser NA, Lin D, Hecht SS (1988) Synthesis of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, 4-(carbethoxynitrosamino)-1-(3-pyridyl)-1-butanone, and N’-nitrosonornicotine labelled with tritium in the pyridine ring. J Label Compd Radiopharm 25:707–716

    Article  CAS  Google Scholar 

  36. Gaffield W, Roller PP, Palmer WG, Keefer LK (1978) Tritium gas exposure as an alternative to base-catalyzed exchange for the one-step tritiation of nitrosamines. J Label Compd Radiopharm 14:91–97

    Article  CAS  Google Scholar 

  37. Lijinsky W (1967) The preparation of tritium labeled N-nitrosamines. J Label Compd Radiopharm 2:384–390

    Article  CAS  Google Scholar 

  38. Wilzbach KE (1957) Tritium-labeling by exposure of organic compounds to tritium gas. J Am Chem Soc 79:1013

    Article  CAS  Google Scholar 

  39. Filer CN (2018) Synthesis and characterization of tritium-labelled substances. Appl Radiat Isot 137:261–272

    Article  CAS  Google Scholar 

  40. Keefer LK, Fodor CH (1970) Facile hydrogen isotope exchange as evidence for an α-nitrosamino carbanion. J Am Chem Soc 92:5747–5748

    Article  CAS  Google Scholar 

  41. Rogic D, Lautie MF, Dizabo P, Leitch LC (1974) Synthesis of deuterated pyrrolidines. J Label Compd Radiopharm 10:655–661

    Article  CAS  Google Scholar 

  42. Loeppky RN, Xiong H (1994) The synthesis of deuterium-labeled N-nitrosodiethanolamine and N-nitroso-2-hydroxymorpholine. J Label Compd Radiopharm 34:1099–1110

    Article  CAS  Google Scholar 

  43. Seebach D, Enders D (1975) Umpolung of amine reactivity. Nucleophilic α-(secondary amino)-alkylation via metalated nitrosamines. Angew Chem Int Ed 14:15–32

    Article  Google Scholar 

  44. Portoghese PS, Larson DL (1973) A convenient, general procedure for preparing specifically [3H]-labeled amines. Synthesis of [3H]-meperidine hydrochloride. J Med Chem 16:420–421

    Article  CAS  Google Scholar 

  45. Krogsgaard-Larsen P, Johansen JS, Falch E (1982) Deuterium labelling of the GABA agonists THIP, piperidine-4-sulphonic acid and the GABA uptake inhibitor THPO. J Label Compd Radiopharm 19:689–702

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The experimental assistance and technical discussions with Charles A. Hainley are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Crist N. Filer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filer, C.N. Creation of a nitrosamine library labelled with 14C or tritium. J Radioanal Nucl Chem 332, 225–232 (2023). https://doi.org/10.1007/s10967-022-08728-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08728-w

Keywords

Navigation