Skip to main content
Log in

Magnetite based green bio composite for uranium exclusion from aqueous solution

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The work demonstrates a new greener approach in developing bio-composite magnetic nanoparticles (Fe3O4@PBP) containing a sorbent extracted from papaya (Carica papaya) bark for efficient uranium (VI) sorption from aqueous media. The findings showed that Fe3O4@PBP nano composites exhibited a characteristic average size of around 26.4 nm, as inferred from the XRD data. Further, these nano composite performed well in the uptake of uranium (VI), revealing the removal efficiency and the maximum adsorption capacity to be 88.8% and 120.48 mg/g, respectively. The thermodynamic investigation indicated that the endothermic uranium(VI) uptake sorption process by expeditious Fe3O4@PBP nano composite is naturally impulsive.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Liu N, Li C, Bai J, Liang H, Gao Q, Wang N, Guo R, Qin Z, Zunli M (2021) A high-capacity amidoxime-functionalized magnetic composite for selective uranium capture in salt lake water. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2021.106688

    Article  Google Scholar 

  2. Bjørklund G, Semenova Y, Pivina L, Dadar M, Rahman MM, Aaseth J, Chirumbolo S (2020) uranium in drinking water: a public health threat. Arch Toxicol. https://doi.org/10.1007/s00204-020-02676-8

    Article  Google Scholar 

  3. WHO (2011) Guidelines for drinking water quality. 4th ed. WHO Press: Geneva, Switzerland

  4. Tuzen M, Saleh TA, Sar A, Sar N (2020) Interfacial polymerization of trimesoyl chloride with melamine and palygorskite for efficient uranium ions ultra-removal. Chem Eng Res Des. https://doi.org/10.1016/j.cherd.2020.04.034

    Article  Google Scholar 

  5. Saleh TA, Naeemullah Tuzen M, Ahmet S (2017) Polyethylenimine modified activated carbon as novel magnetic adsorbent for the removal of uranium from aqueous solution. Chem Eng Res Des. https://doi.org/10.1016/j.cherd.2016.10.030

    Article  Google Scholar 

  6. Wang Z, Hu H, Huang L, Lin F, Liu S, Wu T, Wang X, Rabah SO, Lu Y, Wang X (2020) Graphene aerogel capsulated precipitants for high efficiency and rapid elimination of uranium from water. Chem Eng J. https://doi.org/10.1016/j.cej.2020.125272

    Article  Google Scholar 

  7. Tapia-Rodriguez A, Luna-VelascoA FJA, Sierra-Alvarez R (2010) Anaerobic bioremediation of hexavalent uranium in groundwater by reductive precipitation with methanogenic granular sludge. Water Res. https://doi.org/10.1016/j.watres.2009.12.030

    Article  Google Scholar 

  8. He M, Wang L, Zhang Z, Zhang Y, Zhu J, Wang X, Miao R, Miao R (2020) Stable forward osmosis nanocomposite membrane doped with sulfonated graphene oxide@metal–organic frameworks for heavy metal removal. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.0c17405

    Article  Google Scholar 

  9. Cecal A, Humelnicu D, Rudic V, Cepoi L, Ganju D, Cojocari A (2012) Uptake of uranyl ions from uranium ores and sludges by means of spirulina platensis, porphyridium cruentum and nostok linckia alga. Bioresour Technol. https://doi.org/10.1016/j.biortech.2012.05.053

    Article  Google Scholar 

  10. Tan L, Zhang X, Liu Q, Jing X, Liu J, Song D, Wang J, Liu L, Wang J (2015) Synthesis of Fe3O4@TiO2 core–shell magnetic composites for highly efficient sorption of uranium(VI). Colloids Surf A. https://doi.org/10.1016/j.colsurfa.2015.01.040

    Article  Google Scholar 

  11. Yu B, Xu J, Liu JH, Yang ST, Luo J, Zhou Q, Liu Y, Liao R, Wang H, Liu Y (2013) Adsorption behavior of copper ions on graphene oxide–chitosan aerogel. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2013.08.017

    Article  Google Scholar 

  12. Duan X, Zhang C, Srinivasakannan C, Wang X (2017) Waste walnut shell valorization to iron loaded biochar and its application to arsenic removal. Resour-Effic Technol 3:29–36

    Google Scholar 

  13. Han C, Li H, Pu H, Yu H, Deng L, Huang S, Luo Y (2013) Synthesis and characterization of mesoporous alumina and their performances for removing arsenic (V). Chem Eng J 217:1–9

    Article  CAS  Google Scholar 

  14. Ren Z, Zhang G, Paul Chen J (2011) Adsorptive removal of arsenic from water by an iron-zirconium binary oxide adsorbent. J Colloid Interface Sci 358:230–237

    Article  CAS  Google Scholar 

  15. Ungureanu G, Santos S, Boaventura R, Botelho C (2015) Arsenic and antimony in water and wastewater: overview of removal techniques with special reference to latest advances in adsorption. J Environ Manage 151:326–342

    Article  CAS  Google Scholar 

  16. Mohan D, Pittman CU (2007) Arsenic removal from water/ wastewater using adsorbents-a critical review. J Hazard Mater 142:1–53

    Article  CAS  Google Scholar 

  17. Kausar A, Bhatti HN (2013) Adsorptive removal of uranium from wastewater: a review. J Chem Soc Pakistan 35(3):1041–1052

    Google Scholar 

  18. Mohan D, Sarswat A, Singh VK, Alexandre-Franco M, Pittman CU (2011) Development of magnetic activated carbon from almond shells for trinitrophenol removal from water. Chem Eng J 172:1111–1125

    Article  CAS  Google Scholar 

  19. Kashyap Agarwal A (2019) Removal of salicylic acid from aqueous solutions by magnetic bio sorbent synthesized from pineapple peel. J Pharm Innov 8:502–504

    Google Scholar 

  20. Dick G (2003) Papaya: A tantalising taste of the tropics. maricopa county master gardener volunteer information, University of Arizona Cooperative Extension

  21. Shaik Basha ZVP, Murthy Jha B (2008) Sorption of Hg (II) from aqueous solutions onto carica papaya: application of isotherms. Ind Eng Chem Res 47:980–986

    Article  Google Scholar 

  22. Saeed A, Akhter MW, Iqbal M (2005) Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbent. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2005.02.004

    Article  Google Scholar 

  23. Li X, Xu H, Chen ZS, Chen G (2011) Biosynthesis of NPs by microorganisms and their applications. J Nanomater. https://doi.org/10.1155/2011/270974

    Article  Google Scholar 

  24. Naeem H, Bhattia HN, Sada S, Iqbal M (2017) Uranium remediation using modified vigna radiata waste biomass. Appl Radiat Isot 123:94–101

    Article  CAS  Google Scholar 

  25. Igwegbe WE, Okoro BC, Osuagwu JC (2015) Use of carica papaya as a bio- sorbent for removal of heavy metals in waste water. Int Scholarly Sci Res Innov 9(12):1400–1404

    Google Scholar 

  26. Daoush WM (2017) Co-precipitation and magnetic properties of magnetite nanoparticles for potential biomedical applications. J Nanomed Res 5(3):1–12

    Google Scholar 

  27. Srivastava PK (2016) Spectrophotometric analysis of underground well water uranium of an abondon coal mines. IOSR J Environ Sci Toxicol Food Technol 10:101–105

    CAS  Google Scholar 

  28. Yuan Y, Liu N, Dai Y, Wang B, Liu Y, Chen C, Huang D (2020) Effective biosorption of uranium from aqueous solution by cyanobacterium anabaena flos-aquae. Environ Sci Pollut Res Int 27(35):44306–44313

    Article  CAS  Google Scholar 

  29. Wang S, Guo W, Gao F, Wang Y, Gaoc Y (2018) Lead and uranium sorptive removal from aqueous solution using magnetic and nonmagnetic fast pyrolysis rice husk biochars. RSC Adv 8:13205–13217

    Article  CAS  Google Scholar 

  30. Yu A, Wang J, Jiang Y (2016) Removal of uranium from aqueous solution by alginate beads. Jing Nucl Eng Technol 49:534–540

    Article  Google Scholar 

  31. Rengaraj S, Moon SH, Sivabalan R, Arabindoo B, Murugesan V (2002) Removal of phenol from aqueous solution and resin manufacturing industry wastewater using an agricultural waste: Rubber seed coat. J Hazard Mater 89(2–3):185–196

    CAS  Google Scholar 

  32. Hanif MA, Nadeem R, Bhatti HN, Ahmad NR, Ansari TM (2007) Ni (II) bio sorption by Cassia fistula (Golden Shower) biomass. J Hazard Mater 139:345–355

    Article  CAS  Google Scholar 

  33. Zubair A, Bhatti HN, Hanif MA, Shafqat F (2008) Kinetic and equilibrium modeling for Cr(III) and Cr(VI) removal from aqueous solutions by citrus reticulate waste biomass. Wat Air Soil Pollut 191:305–318

    Article  CAS  Google Scholar 

  34. Saleem N, Bhatti HN (2011) Adsorptive removal and recovery of U (VI) by citrus waste biomass. Bio Resources. https://doi.org/10.15376/biores.6.3.2522-2538

    Article  Google Scholar 

  35. Kausar A, Bhatti HN (2013) Adsorptive removal of uranium from wastewater: a review. J The Chem Soc Pak 35(3):1041–1052

    Google Scholar 

  36. Nuhanović M, Grebo M, Draganović S, Memić M, Smječanin N (2019) Uranium (VI) biosorption by sugar beet pulp: equilibrium, kinetic and thermodynamic studies. J Radioanal Nucl Chem 322(3):2065–2078

    Article  Google Scholar 

  37. Šabanović E, Muhić-Šarac T, Nuhanović M, Memić M (2019) Biosorption of uranium (VI) from aqueous solution by Citrus limon peels: kinetics, equlibrium and batch studies. J Radioanal Nucl Chem 319(1):425–435

    Article  Google Scholar 

  38. Velizar S, Dragana B, Milan G, Bogdanović G (2009) Heavy metal ions adsorption from mine waters by sawdust. Chem Ind Chem Eng. https://doi.org/10.2298/CICEQ0904237S

    Article  Google Scholar 

  39. Iqbal MA, Saeed Zafar SI (2009) FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd2+ and Pb2+ removal by mango peel waste. J Hazard Mater 164:161–171

    Article  CAS  Google Scholar 

  40. Anwar J, Shafique U, Waheed Z, Salman M, Dar A, Anwar S (2010) Removal of Pb (II) and Cd (II) from water by adsorptionon peels of banana. Bioresource Technol 101:1752–1755

    Article  CAS  Google Scholar 

  41. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica, and platinum. J Am Chem Soc 40:1361–1368

    Article  CAS  Google Scholar 

  42. Freundlich H (1906) Adsorption in solution Phys Chem Soc 40:1361–1368

    Google Scholar 

  43. Araújo CS, Almeida IL, Rezende HC, Marcionilio SM, Léon JJ, de Matos TN (2018) Elucidation of mechanism involved in adsorption of Pb (II) onto lobeira fruit (solanum lycocarpum) using langmuir, freundlich and temkin isotherms. Microchem J. https://doi.org/10.1016/j.microc.2017.11.009

    Article  Google Scholar 

  44. Esfandiari B, Monajjemi M (2013) Physical adsorption between mono and diatomic gases inside of carbon nanotube with respect to potential energy. J Phys Theor Chem 10:31–42

    Google Scholar 

  45. Lagergren S (1898) Zur theorie der sogenannten adsorption geloster stoffe”, kungligasvenska vetenkapsakademiens. Handlinger. https://doi.org/10.1007/BF01501332

    Article  Google Scholar 

  46. Blanchard G, Maunaye M, Martin G (1984) Removal of heavy metals from waters by means of natural zeolites. Water Res 18:1501–1507

    Article  CAS  Google Scholar 

  47. Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon solution. J Sanit Eng Div A Soc Civil Eng 89:31–35

    Article  Google Scholar 

  48. Pan M, Lin X, Xie J, Huang X (2017) Kinetic, equilibrium and thermodynamic studies for phosphate adsorption on aluminum hydroxide modified palygorskite nano-composites. RSC Adv 7(8):4492–4500

    Article  CAS  Google Scholar 

  49. Liu Y, Liu YJ (2008) Biosorption isotherms, kinetics and thermodynamics. Sep Purif Technol 61(3):229–242

    Article  CAS  Google Scholar 

  50. Yin X, Bai J, Fan F, Cheng W, Tian W, Wang Y, Zhi Qin Z (2015) Amidoximed silica for uranium (VI) sorption from aqueous solution. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-014-3652

    Article  Google Scholar 

  51. Adeogun A, Akande J, Idowu M, Kareem S (2019) Magnetic tuned sorghum husk biosorbent for effective removal of cationic dyes from aqueous solution: isotherm, kinetics, thermodynamics and optimization studies. Appl Water Sci 9:1–17

    Article  CAS  Google Scholar 

  52. Cheng Y, Li F, Liu N, Lan T, Yang Y, Zhang T, Qing R (2021) A novel freeze-dried natural microalga powder for highly efficient removal of uranium from wastewater. Chemosphere. https://doi.org/10.1016/j.chemosphere.2021.131084

    Article  Google Scholar 

  53. Yang A, Yang P, Huang CP (2017) Preparation of graphene oxide–chitosan composite and adsorption performance for uranium. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-017-5329-4

    Article  Google Scholar 

  54. Schierz A, Zänker H (2009) Aqueous suspensions of carbon nanotubes: surface oxidation, colloidal stability and uranium sorption. Environ Pollut. https://doi.org/10.1016/j.envpol.2008.09.045

    Article  Google Scholar 

  55. Zou W, Bai H, Zhao L, Li K, Han R (2011) Characterization and properties of zeolite as adsorbent for removal of uranium (VI) from solution in fixed bed column. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-011-1026-x

    Article  Google Scholar 

  56. Stopa LCB, Yamaura M (2010) Uranium removal by chitosan impregnated with magnetite nanoparticles: adsorption and desorption. Int J Nucl Energy Sci and Technol. https://doi.org/10.1504/IJNEST.2010.035538

    Article  Google Scholar 

  57. Liu F, Wang A, Xiang M, Hu Q, Hu B (2022) Effective adsorption and immobilization of Cr (VI) and U (VI) from aqueous solution by magnetic amine-functionalized SBA-15. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2021.120042

    Article  Google Scholar 

  58. Liu L, Lin X, Li M, Chu H, Wang H, Xie Y, Luo X, Liu M, Liang L, Gong H (2021) Microwave-assisted hydrothermal synthesis of carbon doped with phosphorus for uranium (VI) adsorption. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-020-07453-6

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Principal of BIT Durg (C.G.) for providing lab facilities. The authors are grateful to the NCNR, Pt.R.S.U. Raipur for offering FTIR facilities, as well as IIT Bhilai and the UGC-DAE consortium for scientific research Indore for providing SEM, EDS, and XRD facilities.

Funding

This research was not funded in any way.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poonam Deshmukh.

Ethics declarations

Conflict of interest

There are no relevant financial interests to disclose for the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deshmukh, P., Sar, S.K., Jindal, M.K. et al. Magnetite based green bio composite for uranium exclusion from aqueous solution. J Radioanal Nucl Chem 332, 297–310 (2023). https://doi.org/10.1007/s10967-022-08723-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08723-1

Keywords

Navigation