Skip to main content
Log in

Co transport of bentonite colloids and Eu(III) transport in saturated heterogeneous porous media

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Natural subsurface environment is a complex heterogeneous system. The key factors affecting the formation of heterogeneous flow and the co-transport behavior of bentonite colloids with Eu(III) under different hydrochemical conditions were investigated in saturated heterogeneous quartz sand column. Quartz sand has a certain filtering effect on Eu(III), the larger sand acts as the preferential flow channel of the heterogeneous media. Media structural configurations and ion strength displayed synergistic effect on the transport and release behaviors of Eu(III) in homogeneous/heterogeneous porous media. Heterogeneous flow in porous media will aggravate the transport risk of bentonite colloid-radionuclide conjugates in the repository environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zänker H, Hennig C (2014) Colloid-borne forms of tetravalent actinides: a brief review. J Contam Hydrol 157:87–105

    PubMed  Google Scholar 

  2. Philippe A, Schaumann GE (2014) Interactions of dissolved organic matter with natural and engineered inorganic colloids: a review. Environ Sci Technol 48:8946–8962

    CAS  PubMed  Google Scholar 

  3. Ahmed B, Rizvi A, Ali K, Lee J, Zaidi A, Khan MS, Musarrat J (2021) Nanoparticles in the soil–plant system: a review. Environ Chem Lett 19:1545–1609

    CAS  Google Scholar 

  4. Wang M, Gao B, Tang D (2016) Review of key factors controlling engineered nanoparticle transport in porous media. J Hazard Mater 318:233–246

    CAS  PubMed  Google Scholar 

  5. Xu Z, Pan D, Tang Q, Wei X, Liu C, Li X, Chen X, Wu W (2022) Co-transport and co-release of Eu(III) with bentonite colloids in saturated porous sand columns: controlling factors and governing mechanisms. Environ Pollut 298:118842

    CAS  PubMed  Google Scholar 

  6. Kersting AB, Efurd DW, Finnegan DL, Rokop DJ, Smith DK, Thompson JL (1999) Migration of plutonium in ground water at the Nevada Test Site. Nature 397:56–59

    CAS  Google Scholar 

  7. Tran E, Zavrin M, Kersting AB, Klein-BenDavid O, Teutsch N, Weisbrod N (2021) Colloid-facilitated transport of 238Pu, 233U and 137Cs through fractured chalk: laboratory experiments, modelling, and implications for nuclear waste disposal. Sci Total Environ 757:143818

    CAS  PubMed  Google Scholar 

  8. Oudega TJ, Lindner G, Derx J, Farnleitner AH, Sommer R, Blaschke AP, Stevenson ME (2021) Upscaling transport of Bacillus subtilis endospores and coliphage phiX174 in heterogeneous porous media from the column to the field scale. Environ Sci Technol 55:11060–11069

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang Y, Wan Q, Liu B, Wei Z, Zhang M, Tang Y (2020) Co-transport and competitive retention of different ionic rare earth elements (REEs) in quartz sand: effect of kaolinite. Sci Total Environ 722:137779

    CAS  PubMed  Google Scholar 

  10. Romanchuk AY, Vlasova IE, Kalmykov SN (2020) Speciation of uranium and plutonium from nuclear legacy sites to the environment: a mini review. Front Chem 8:630

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Bradford SA, Harvey RW (2016) Future research needs involving pathogens in groundwater. Hydrogeol J 25:931–938

    Google Scholar 

  12. Sen TK (2010) Processes in pathogenic biocolloidal contaminants transport in saturated and unsaturated porous media: a review. Water Air Soil Pollut 216:239–256

    Google Scholar 

  13. Dong S, Shi X, Gao B, Wu J, Sun Y, Guo H, Xu H, Wu J (2016) Retention and release of graphene oxide in structured heterogeneous porous media under saturated and unsaturated conditions. Environ Sci Technol 50:10397–10405

    CAS  PubMed  Google Scholar 

  14. Knappenberger T, Flury M, Mattson ED, Harsh JB (2014) Does water content or flow rate control colloid transport in unsaturated porous media? Environ Sci Technol 48:3791–3799

    CAS  PubMed  Google Scholar 

  15. Chang H-s, Um W, Rod K, Serne RJ, Thompson A, Perdrial N, Steefel CI, Chorover J (2011) Strontium and cesium release mechanisms during unsaturated flow through waste-weathered Hanford sediments. Environ Sci Technol 45:8313–8320

    CAS  PubMed  Google Scholar 

  16. Zhang WJ, Yuan SS (2019) Characterizing preferential flow in landfilled municipal solid waste. Waste Manag 84:20–28

    PubMed  Google Scholar 

  17. Wang K, Ma Y, Sun B, Yang Y, Zhang Y, Zhu L (2022) Transport of silver nanoparticles coated with polyvinylpyrrolidone of various molecular sizes in porous media: interplay of polymeric coatings and chemically heterogeneous surfaces. J Hazard Mater 429:128247

    CAS  PubMed  Google Scholar 

  18. Katzourakis VE, Chrysikopoulos CV (2018) Impact of spatially variable collision efficiency on the transport of biocolloids in geochemically heterogeneous porous media. Water Resour Res 54:3841–3862

    CAS  Google Scholar 

  19. Zhang W, Tang X, Weisbrod N, Guan Z (2012) A review of colloid transport in fractured rocks. J Mt Sci 9:770–787

    Google Scholar 

  20. Li B, Pales AR, Clifford HM, Kupis S, Hennessy S, Liang W, Moysey S, Powell B, Finneran KT, Darnault CJG (2018) Preferential flow in the vadose zone and interface dynamics: impact of microbial exudates. J Hydrol 558:72–89

    CAS  Google Scholar 

  21. Fuhrmann I, Maarastawi S, Neumann J, Amelung W, Frindte K, Knief C, Lehndorff E, Wassmann R, Siemens J (2019) Preferential flow pathways in paddy rice soils as hot spots for nutrient cycling. Geoderma 337:594–606

    CAS  Google Scholar 

  22. Morales VL, Parlange JY, Steenhuis TS (2010) Are preferential flow paths perpetuated by microbial activity in the soil matrix? A review. J Hydrol 393:29–36

    CAS  Google Scholar 

  23. Zhu X, Chen C, Wu J, Yang J, Zhang W, Zou X, Liu W, Jiang X (2019) Can intercrops improve soil water infiltrability and preferential flow in rubber-based agroforestry system? Soil Tillage Res 191:327–339

    Google Scholar 

  24. Mondal A, Dubey BK, Arora M, Mumford K (2021) Porous media transport of iron nanoparticles for site remediation application: a review of lab scale column study, transport modelling and field-scale application. J Hazard Mater 403:123443

    CAS  PubMed  Google Scholar 

  25. Sheng F, Liu H, Wang K, Zhang R, Tang Z (2014) Investigation into preferential flow in natural unsaturated soils with field multiple-tracer infiltration experiments and the active region model. J Hydrol 508:137–146

    Google Scholar 

  26. Sun Y, Zhang Z, Heng J, Gao C, Jin Q, Chen Z, Guo Z (2022) Co-transport of U(VI) and colloidal biochar in quartz sand heterogeneous media. Sci Total Environ 816:151606

    CAS  PubMed  Google Scholar 

  27. Chen C, Zhao K, Shang J, Liu C, Wang J, Yan Z, Liu K, Wu W (2018) Uranium (VI) transport in saturated heterogeneous media: influence of kaolinite and humic acid. Environ Pollut 240:219–226

    CAS  PubMed  Google Scholar 

  28. Fox PM, Davis JA, Hay MB, Conrad ME, Campbell KM, Williams KH, Long PE (2012) Rate-limited U(VI) desorption during a small-scale tracer test in a heterogeneous uranium-contaminated aquifer. Water Resour Res 48:W05512

    Google Scholar 

  29. Zhang J, Lei T, Qu L, Zhang M, Chen P, Gao X, Chen C, Yuan L (2019) Method to quantitatively partition the temporal preferential flow and matrix infiltration in forest soil. Geoderma 347:150–159

    Google Scholar 

  30. Hammond GE, Lichtner PC, Rockhold ML (2011) Stochastic simulation of uranium migration at the Hanford 300 Area. J Contam Hydrol 120–121:115–128

    PubMed  Google Scholar 

  31. Shen C, Zhang M, Zhang S, Wang Z, Zhang H, Li B, Huang Y (2015) Influence of surface heterogeneities on reversibility of fullerene (nC60) nanoparticle attachment in saturated porous media. J Hazard Mater 290:60–68

    CAS  PubMed  Google Scholar 

  32. Zhao K, Chen C, Cheng T, Shang J (2019) Graphene oxide-facilitated uranium transport and release in saturated medium: effect of ionic strength and medium structure. Environ Pollut 247:668–677

    CAS  PubMed  Google Scholar 

  33. Dong S, Gao B, Sun Y, Guo H, Wu J, Cao S, Wu J (2019) Visualization of graphene oxide transport in two-dimensional homogeneous and heterogeneous porous media. J Hazard Mater 369:334–341

    CAS  PubMed  Google Scholar 

  34. Tran E, Klein Ben-David O, Teutch N, Weisbrod N (2016) Influence of heteroaggregation processes between intrinsic colloids and carrier colloids on cerium(III) mobility through fractured carbonate rocks. Water Res 100:88–97

    CAS  PubMed  Google Scholar 

  35. Wang M, Ford RM (2009) Transverse bacterial migration induced by chemotaxis in a packed column with structured physical heterogeneity. Environ Sci Technol 43:5921–5927

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang M, Ford RM (2010) Quantitative analysis of transverse bacterial migration induced by chemotaxis in a packed column with structured physical heterogeneity. Environ Sci Technol 44:780–786

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Xu Z, Niu Z, Pan D, Zhao X, Wei X, Li X, Tan Z, Chen X, Liu C, Wu W (2021) Mechanisms of bentonite colloid aggregation, retention, and release in saturated porous media: role of counter ions and humic acid. Sci Total Environ 793:148545

    CAS  PubMed  Google Scholar 

  38. Wei X, Pan D, Xu Z, Xian D, Li X, Tan Z, Liu C, Wu W (2021) Colloidal stability and correlated migration of illite in the aquatic environment: the roles of pH, temperature, multiple cations and humic acid. Sci Total Environ 768:144174

    CAS  PubMed  Google Scholar 

  39. Sun Y, Pan D, Wei X, Xian D, Wang P, Hou J, Xu Z, Liu C, Wu W (2020) Insight into the stability and correlated transport of kaolinite colloid: effect of pH, electrolytes and humic substances. Environ Pollut 266:115189

    CAS  PubMed  Google Scholar 

  40. Pan DQ, Fan QH, Li P, Liu SP, Wu WS (2011) Sorption of Th(IV) on Na-bentonite: effects of pH, ionic strength, humic substances and temperature. Chem Eng J 172:898–905

    CAS  Google Scholar 

  41. Xu Z, Sun Y, Niu Z, Xu Y, Wei X, Chen X, Pan D, Wu W (2020) Kinetic determination of sedimentation for GMZ bentonite colloids in aqueous solution: effect of pH, temperature and electrolyte concentration. Appl Clay Sci 184:105393

    CAS  Google Scholar 

  42. Xu Z, Pan D, Sun Y, Wu W (2018) Stability of GMZ bentonite colloids: aggregation kinetic and reversibility study. Appl Clay Sci 161:436–443

    CAS  Google Scholar 

  43. Xu Z, Niu Z, Tang Q, Wei X, Chen X, Pan D, Wu W (2021) Adsorption characteristics of Eu(III) on colloidal bentonite particles in aqueous solution: impact of colloid concentration, pH, foreign ions, and temperature. J Radioanal Nucl Chem 330:765–773

    CAS  Google Scholar 

  44. Kim HJ, Phenrat T, Tilton RD, Lowry GV (2012) Effect of kaolinite, silica fines and pH on transport of polymer-modified zero valent iron nano-particles in heterogeneous porous media. J Colloid Interface Sci 370:1–10

    CAS  PubMed  Google Scholar 

  45. Chen C, Shang J, Zheng X, Zhao K, Yan C, Sharma P, Liu K (2018) Effect of physicochemical factors on transport and retention of graphene oxide in saturated media. Environ Pollut 236:168–176

    CAS  PubMed  Google Scholar 

  46. Rasmuson A, Erickson B, Borchardt M, Muldoon M, Johnson WP (2020) Pathogen prevalence in fractured versus granular aquifers and the role of forward flow stagnation zones on pore-scale delivery to surfaces. Environ Sci Technol 54:137–145

    CAS  PubMed  Google Scholar 

  47. Lv X, Gao B, Sun Y, Dong S, Wu J, Jiang B, Shi X (2016) Effects of grain size and structural heterogeneity on the transport and retention of nano-TiO2 in saturated porous media. Sci Total Environ 563–564:987–995

    PubMed  Google Scholar 

  48. Kumar S, Pente AS, Bajpai RK, Kaushik CP, Tomar BS (2013) Americium sorption on smectite-rich natural clay from granitic ground water. Appl Geochem 35:28–34

    CAS  Google Scholar 

  49. Patel MA, Kar AS, Kumar S, Das MK, Raut VV, Tomar BS (2019) Effect of sulfate on sorption of Eu(III) by Na-montmorillonite. Radiochim Acta 107:115–128

    CAS  Google Scholar 

  50. Schnurr A, Marsac R, Rabung T, Lützenkirchen J, Geckeis H (2015) Sorption of Cm(III) and Eu(III) onto clay minerals under saline conditions: batch adsorption, laser-fluorescence spectroscopy and modeling. Geochim Cosmochim Acta 151:192–202

    CAS  Google Scholar 

  51. Songsheng L, Hua X, Mingming W, Xiaoping S, Qiong L (2011) Sorption of Eu(III) onto Gaomiaozi bentonite by batch technique as a function of pH, ionic strength, and humic acid. J Radioanal Nucl Chem 292:889–895

    Google Scholar 

  52. Zhao P, Zavarin M, Dai Z, Kersting AB (2020) Stability of plutonium oxide nanoparticles in the presence of montmorillonite and implications for colloid facilitated transport. Appl Geochem 122:104725

    CAS  Google Scholar 

  53. Wolfsberg A, Dai Z, Zhu L, Reimus P, Xiao T, Ware D (2017) Colloid-facilitated plutonium transport in fractured tuffaceous rock. Environ Sci Technol 51:5582–5590

    CAS  PubMed  Google Scholar 

  54. Wang Y, Bradford SA, Šimůnek J (2014) Physicochemical factors influencing the preferential transport of Escherichia coli in Soils. Vadose Zone J 13:1–10

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22006060, 22176077); CAEA Innovation Center for Geological Disposal of High-Level Radioactive Waste (CXJJ21102210); the Fundamental Research Funds for the Central Universities (lzujbky-2020-kb06); Science and Technology Program of Gansu Province, China (20JR10RA615).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Duoqiang Pan or Wangsuo Wu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Tang, Q., Pan, D. et al. Co transport of bentonite colloids and Eu(III) transport in saturated heterogeneous porous media. J Radioanal Nucl Chem 332, 1125–1133 (2023). https://doi.org/10.1007/s10967-022-08718-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08718-y

Keywords

Navigation