Skip to main content
Log in

Effect of Si content, pH, electrolyte and fulvic acid on the stability of Th(IV)-silicate colloids

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Although the occurrence of tetravalent actinide (An(IV)) silicates has been reported, little is known regarding the behavior of colloidal An(IV)-silicates in the environment. In this context, we prepared Th(IV)-silicate colloids and studied its dispersion stability as a function of important environmental factors, i.e., Si content, pH, electrolyte and fulvic acid (FA). Results indicated that the colloids were more stable at lower Th content and higher pH conditions. The aggregation of the colloids became kinetically faster with increasing ionic strength. Cations with higher valence triggered severer aggregation of Th(IV)-silicate colloids, while the same valence cations showed different coagulation abilities. As a result, the inhibition effect followed an order of Sr2+ > Ca2+ > Cs+ > Na+. In addition, the stability of Th(IV)-silicate colloids was improved significantly in the presence of FA. The dependence of the colloid stability on varied chemical conditions was well illustrated by the DLVO theory. The obtained results lay the foundation for elucidating the behavior and migration of An(IV)-silicate colloids in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Deblonde GJP, Kersting AB, Zavarin M (2020) Open questions on the environmental chemistry of radionuclides. Commun Chem 3:167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Maher K, Bargar JR, Brown GE Jr (2013) Environmental speciation of actinides. Inorg Chem 52:3510–3532

    Article  CAS  PubMed  Google Scholar 

  3. Frazier SW, Kretzchmaer R, Kraemer SM (2005) Bacterial siderophores promote dissolution of UO2 under reducing conditions. Environ Sci Technol 39:5709–5715

    Article  CAS  PubMed  Google Scholar 

  4. Zänker H, Hennig C (2014) Colloid-borne forms of tetravalent actinides: a brief review. J Contam Hydrol 157:87–105

    Article  PubMed  Google Scholar 

  5. Geckeis H (2004) Colloid influence on the radionuclide migration from a nuclear waste repository. In: Giere, R., Stille, P. (Eds.), Energy, Waste and the Environment: Geochemical Perspective. Geological Society, London, Special Publications 236: 529–543

  6. Panak PJ, Kim MA, Yun YI, Kim JI (2003) Interaction of actinides with aluminosilicate colloids in statu nascendi: part II: spectroscopic speciation of colloid-borne actinides(III). Colloids Surf A Physicochem Eng Asp 227:93–103

    Article  CAS  Google Scholar 

  7. Bouby M, Geckeis H, Lützenkirchen J, Mihai S, Schäfer T (2011) Interaction of bentonite colloids with cs, Eu, Th and U in presence of humic acid: a flow field-flow fractionation study. Geochim Cosmochim Acta 75:3866–3880

    Article  CAS  Google Scholar 

  8. Wang Y, Frutschi M, Suvorova E, Phrommavanh V, Descostes M, Osman A, Geipel G, Bernier-Latmani R (2013) Uranium(IV) mobility in a mining-impacted wetland. Goldschmidt Conference, Florence, Abstracts: 2464

  9. Xu C, Santschi PH, Zhong JY, Hatcher PG, Francis AJ, Dodge CJ, Roberts KA, Hung CC, Honeyman BD (2008) Colloidal cutin-like substances cross-linked to siderophore decomposition products mobilizing plutonium from contaminated soils. Environ Sci Technol 42:8211–8217

    Article  CAS  PubMed  Google Scholar 

  10. Johnsson A, Odegaard-Jensen A, Skarnemark G, Pedersen K (2009) Leaching of spent nuclear fuel in the presence of siderophores. J Radioanal Nucl Chem 279:619–626

    Article  CAS  Google Scholar 

  11. Pirlet V (2001) Overview of actinides (np, Pu, Am) and tc release from waste glasses: influence of solution composition. J Nucl Mater 298:47–54

    Article  CAS  Google Scholar 

  12. Dietzel M (2000) Dissolution of silicates and the stability of polysilicic acid. Geochim Cosmochim Acta 64:3275–3281

    Article  CAS  Google Scholar 

  13. Deditius APP, Pointeau V, Zhang JMM, Ewing RC (2012) Formation of nanoscale Th-coffinite. Am Mineral 97:681–693

    Article  CAS  Google Scholar 

  14. Pointeau V, Deditius AP, Miserque F, Renock D, Becker U, Zhang J, Clavier N, Dacheux N, Poinssot C, Ewing RC (2009) Synthesis and characterization of coffinite. J Nucl Mater 393:449–458

    Article  CAS  Google Scholar 

  15. Szenknect S, Costin DT, Clavier N, Mesbah A, Poinssot C, Vitorge P, Dacheux N (2013) From uranothorites to coffinite: a solid solution route to the thermodynamic properties of USiO4. Inorg Chem 52:6957–6968

    Article  CAS  PubMed  Google Scholar 

  16. Siever R (1972) Silicon-abundance in natural waters. In: Wedepohl, K.H., (Eds.), Handbook of Geochemistry. Springer: 14-I-1–14-I-6

  17. Langmuir D (1997) Aqueous Environmental Geochemistry. Prentice-Hall Inc

  18. Yusov AB, Garnov AY, Shilov VP, Tananaev IG, Grigor’ev MS, Krot NN (2000) Plutonium(IV) precipitation from alkaline solutions: II. Effect of anions on composition and properties of hydrated plutonium dioxide PuO2·xH2O. Radiochem 42:157–160

    CAS  Google Scholar 

  19. Zänker H, Weiss S, Hennig C, Brendler V, Ikeda-Ohno A (2016) Oxyhydroxy silicate colloids: a new type of waterborne actinide(IV) colloids. ChemistryOpen 5:174–182

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dreissig I, Weiss S, Hennig C, Bernhard G, Zänker H (2011) Formation of uranium(IV)-silica colloids at near-neutral pH. Geochim Cosmochim Acta 75:352–367

    Article  CAS  Google Scholar 

  21. Hennig C, Weiss S, Banerjee D, Brendler E, Honkimäki V, Cuello G, Ikeda-Ohno A, Scheinost AC, Zänker H (2013) Solid-state properties and colloidal stability of thorium(IV)–silica nanoparticles. Geochim Cosmochim Acta 103:197–212

    Article  CAS  Google Scholar 

  22. Husar R, Weiss S, Hennig C, Hubner R, Ikeda-Ohno A, Zanker H (2015) Formation of neptunium(IV)-silica colloids at near-neutral and slightly alkaline pH. Environ Sci Technol 49:665–671

    Article  CAS  PubMed  Google Scholar 

  23. Browman MG, Robinson RB, Reed GD (1989) Silica polymerization and other factors in iron control by sodium silicate and sodium hypochlorite additions. Environ Sci Technol 23:566–572

    Article  CAS  Google Scholar 

  24. Panak PJ, Kim MD, Klenze R, Kim JI, Fanghanel T (2005) Complexation of cm(III) with aqueous silicic acid. Radiochim Acta 93:133–139

    Article  CAS  Google Scholar 

  25. Wagner S, Gondikas A, Neubauer E, Hofmann T, von der Kammer F (2014) Spot the difference: engineered and natural nanoparticles in the environment-release, behavior, and fate. Angew Chem Int Ed Engl 53:12398–12419

    CAS  PubMed  Google Scholar 

  26. Jensenf MP, Choppin GR (1996) Complexation of europium(III) by aqueous orthosilicic acid. Radiochim Acta 72:143–150

    Article  Google Scholar 

  27. Zhang D, Wang Y, Heng J, Diao X, Zu G, Jin Q, Chen Z, Guo Z (2022) Stability of Eu(III)-silicate colloids: Effect of Eu content, pH, electrolyte and fulvic acid. J Hazard Mater 438:129363

    Article  CAS  PubMed  Google Scholar 

  28. Chen KL, Elimelech M (2006) Aggregation and deposition kinetics of fullerene (C60) nanoparticles. Langmuir 22:10994–11001

    Article  CAS  PubMed  Google Scholar 

  29. Zhang W, Crittenden J, Li K, Chen Y (2012) Attachment efficiency of nanoparticle aggregation in aqueous dispersions: modeling and experimental validation. Environ Sci Technol 46:7054–7062

    Article  CAS  PubMed  Google Scholar 

  30. Missana T, Adell A (2000) On the applicability of DLVO theory to the prediction of clay colloids stability. J Colloid Interface Sci 230:150–156

    Article  CAS  PubMed  Google Scholar 

  31. Ueno K, Inaba A, Kondoh M, Watanabe M (2008) Colloidal stability of bare and polymer-grafted silica nanoparticles in ionic liquids. Langmuir 24:5253–5259

    Article  CAS  PubMed  Google Scholar 

  32. Meier M, Ungerer J, Klinge M, Nirschl H (2018) Formation of porous silica nanoparticles at higher reaction kinetics. Powder Technol 339:801–808

    Article  CAS  Google Scholar 

  33. Kosmulski M (2009) pH-dependent surface charging and points of zero charge. IV. Update and new approach. J Colloid Interface Sci 337:439–448

    Article  CAS  PubMed  Google Scholar 

  34. Sahai N (2002) Is silica really an anomalous oxide? Surface acidity and aqueous hydrolysis revisited. Environ Sci Technol 36:445–452

    Article  CAS  PubMed  Google Scholar 

  35. Yu C, Munoz-Carpena R, Gao B, Perez-Ovilla O (2013) Effects of ionic strength, particle size, flow rate, and vegetation type on colloid transport through a dense vegetation saturated soil system: experiments and modeling. J Hydrol 499:316–323

    Article  CAS  Google Scholar 

  36. Sobecka DC, Higgins MJ (2002) Examination of three theories for mechanisms of cation-induced bioflocculation. Water Res 36:527–538

    Article  Google Scholar 

  37. Li H, Wen Y, Cao A, Huang J, Zhou Q (2014) The influence of multivalent cations on the flocculation of activated sludge with different sludge retention times. Water Res 55:225–232

    Article  CAS  PubMed  Google Scholar 

  38. Li Q, Xie L, Jiang Y, Fortner JD, Yu K, Liao P, Liu C (2019) Formation and stability of NOM-Mn(III) colloids in aquatic environments. Water Res 149:190–201

    Article  PubMed  Google Scholar 

  39. Nowicki W, Nowicka G (1994) Verification of the Schulze-Hardy rule: a colloid chemistry experiment. J Chem Edu 71:624–626

    Article  CAS  Google Scholar 

  40. Liu Z, Rios-Carvajal T, Andersson MP, Ceccato M, Stipp SLS, Hassenkam T (2019) Ion effects on molecular interaction between graphene oxide and organic molecules. Environ Sci Nano 6:2281–2291

    Article  CAS  Google Scholar 

  41. Huynh KA, Chen KL (2011) Aggregation kinetics of citrate and polyvinylpyrrolidone coated silver nanoparticles in monovalent and divalent electrolyte solutions. Environ Sci Technol 45:5564–5571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Singh N, Tiwari E, Khandelwal N, Darbha GK (2019) Understanding the stability of nanoplastics in aqueous environments: effect of ionic strength, temperature, dissolved organic matter, clay, and heavy metals. Environ Sci Nano 6:2968–2976

    Article  CAS  Google Scholar 

  43. Yang K, Xing B (2009) Adsorption of fulvic acid by carbon nanotubes from water. Environ Pollut 157:1095–1100

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work funded by the National Natural Science Foundation of China (Grant Nos. 21906074, 22176079, 12175094), the Natural Science Foundation of Gansu Province, China (Nos. 21JR7RA513, 22JR5RA480) and the Fundamental Research Funds for the Central Universities (lzujbky-2021-32, lzujbky-2022-sp05).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Jin or Zongyuan Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Diao, X., Wang, Y. et al. Effect of Si content, pH, electrolyte and fulvic acid on the stability of Th(IV)-silicate colloids. J Radioanal Nucl Chem 332, 1171–1180 (2023). https://doi.org/10.1007/s10967-022-08703-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08703-5

Keywords

Navigation