Skip to main content
Log in

A low-cost delta underwater gamma system (DUGS) for in-situ measurement of natural radionuclides in aquatic sediments

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this paper, we report on the design and radiometric performance of the delta underwater gamma system, a low-cost modular, waterproof, mobile detector system that we recently developed. Radiometric performance tests indicate that the SS316 enclosure can withstand impact from rock outcrops and debris, with approximately 10% radiation absorption reported (14% at 351 keV and 8% at 1764 keV), implying minimal information loss. There is no significant difference in measurements obtained when the detector is operated vertically or horizontally. From the preliminary in-situ measurements, the system is sensitive to natural radionuclide variability in aquatic sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ciavola P, Grottoli E (2019) Tracers and coarse sediment. Springer, Cham, pp 1796–1803

    Google Scholar 

  2. Jurado Vargas M, Vera Tomé F, Martin Sánchez A, Crespo Vázquez MT, Gascón Murillo JL (1997) Distribution of uranium and thorium in sediments and plants from a granitic fluvial area. Appl Radiat Isot 48:1137–1143

    Article  Google Scholar 

  3. Thereska J (2009) Natural radioactivity of coastal sediments as tracer in dynamic sedimentology. Nukleonika 54:45–50

    CAS  Google Scholar 

  4. Pant HJ, Sharma VK, Goswami S, Singh G (2013) Radiotracer investigations for sediment transport in ports of India. BARC Newsl 334:10–19

  5. Hai PS, Quang NH, Xuan NM, Chuong PN, Hien PZ (1997) Application of tracer techniques in studies of sediment transport in Vietnam. In: Second Int. Conf. Isot. Conf. Proc. Australia, p 332

  6. Naumenko A, Andrukhovich S, Kabanov V, Kabanau D, Kurochkin Y, Martsynkevich B, Shoukavy D, Shpak P (2018) Autonomous NaI(Tl) gamma-ray spectrometer for in situ underwater measurements. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 908:97–109

    Article  CAS  Google Scholar 

  7. Zhang Y, Wu B, Liu D, Zhang Y, Cheng Y (2018) Development and deployment of an autonomous sensor for the in-situ radioactivity measurement in the marine environment. Appl Radiat Isot 142:181–186

    Article  CAS  PubMed  Google Scholar 

  8. Povinec PP, Osvath I, Comanducci JF (2008) Underwater gamma-ray spectrometry. Radioact Environ 11:449–479

    Article  CAS  Google Scholar 

  9. Bezuidenhout J (2020) The investigation of natural radionuclides as tracers for monitoring sediment processes. J Appl Geophys 181:104135

    Article  Google Scholar 

  10. Osvath I, Povinec PP (2001) Seabed γ-ray spectrometry: applications at IAEA-MEL. J Environ Radioact 53:335–349

    Article  CAS  PubMed  Google Scholar 

  11. Tsabaris C, Ballas D (2005) On line gamma-ray spectrometry at open sea. Appl Radiat Isot 62:83–89

    Article  CAS  PubMed  Google Scholar 

  12. Tsabaris C, Bagatelas C, Dakladas T, Papadopoulos CT, Vlastou R, Chronis GT (2008) An autonomous in situ detection system for radioactivity measurements in the marine environment. Appl Radiat Isot 66:1419–1426

    Article  CAS  PubMed  Google Scholar 

  13. Kim JH, Park KH, Joo KS (2018) Development of low-cost, compact, real-time, and wireless radiation monitoring system in underwater environment. Nucl Eng Technol 50:801–805

    Article  CAS  Google Scholar 

  14. Tsabaris C, Androulakaki EG, Alexakis S, Patiris DL (2018) An in-situ gamma-ray spectrometer for the deep ocean. Appl Radiat Isot. https://doi.org/10.1016/j.apradiso.2018.08.024

    Article  PubMed  Google Scholar 

  15. Cao Z, Sun Z, Zhou F, Li B, Cao P, An Q (2020) Design of a prototype in-situ gamma-ray spectrometer for deep sea. J Instrum. https://doi.org/10.1088/1748-0221/15/11/P11029

    Article  Google Scholar 

  16. Lee C, Kim HR (2021) Gamma-ray sensor using yalo3(Ce) single crystal and cnt/peek with high sensitivity and stability under harsh underwater conditions. Sensors 21:1–18

    CAS  Google Scholar 

  17. Povinec PP, Osvath I, Baxter MS (1996) Underwater gamma-spectrometry with HPGe and NaI(Tl) detectors. Appl Radiat Isot 47:1127–1133

    Article  CAS  Google Scholar 

  18. De Meijer RJ (1998) Heavy minerals: from `Edelstein’ to Einstein. J Geochem Explor 62:81–103

    Article  Google Scholar 

  19. Van Wijngaarden M, Venema LB, De Meijer RJ (2002) Radiometric sand mud characterisation in the Rhine-Meuse estuary part B. In situ mapping. Geomorphology 43:103–116

    Article  Google Scholar 

  20. Maučec M, De Meijer RJ, Rigollet C, Hendriks PHGM, Jones DG (2004) Detection of radioactive particles offshore by γ-ray spectrometry part I: Monte Carlo assessment of detection depth limits. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 525:593–609

    Article  Google Scholar 

  21. Jones DG (2001) Development and application of marine gamma-ray measurements: a review. J Environ Radioact 53:313–333

    Article  CAS  PubMed  Google Scholar 

  22. Sailer C, Lubsandorzhiev B, Strandhagen C (2012) Jochum J (2012) Low temperature light yield measurements in NaI and NaI(Tl). Eur Phys J C 72(6):1–4

    Google Scholar 

  23. Trimble—Transforming the way the world works. https://www.trimble.com/. Accessed 30 Aug 2021

  24. Le Roux RR, Bezuidenhout J (2022) An automated drift correction method for in situ NaI(Tl)-detectors used in extreme environments. Appl Radiat Isot. https://doi.org/10.1016/J.APRADISO.2021.110069

    Article  PubMed  Google Scholar 

  25. Rotshtein VP, Ivanov YF, Markov AB et al (2006) Surface alloying of stainless steel 316 with copper using pulsed electron-beam melting of film-substrate system. Surf Coat Technol 200:6378–6383

    Article  CAS  Google Scholar 

  26. Berger MJ, Hubbell JH, Seltzer SM, Chang J, Coursey JS, Sukumar R, Zucker DS, Olsen K (2010) XCOM: photon cross sections database | NIST. NIST. https://doi.org/10.18434/T48G6X

    Book  Google Scholar 

  27. Corner B, Toens P, Richards D, Van As D, Vleggaar C (1979) The Pelindaba facility for calibrating radiometric field instruments. Pretoria

  28. Venema L, de Meijer R (2001) Natural radionuclides as tracers of the dispersal of dredge spoil dumped at sea. J Environ Radioact 55:221–239

    Article  CAS  PubMed  Google Scholar 

  29. Hendriks PHGM, Limburg J, De MRJ (2001) Full-spectrum analysis of natural γ-ray spectra. J Environ Radioact 53:365–380

    Article  CAS  PubMed  Google Scholar 

  30. Salmon L (1961) Analysis of gamma-ray scintillation spectra by the method of least squares. Nucl Instrum Methods 14:193–199

    Article  Google Scholar 

  31. Newman RT, Lindsay R, Maphoto KP, Mlwilo NA, Mohanty AK, Roux DG, de Meijer RJ, Hlatshwayo IN (2008) Determination of soil, sand and ore primordial radionuclide concentrations by full-spectrum analyses of high-purity germanium detector spectra. Appl Radiat Isot 66:855–859

    Article  CAS  PubMed  Google Scholar 

  32. Davis M (2004) Measurement uncertainties and minimum detectable concentrations for the in situ NaI gamma spectroscopy systems used at the Fernald site

  33. Buyuk B (2015) Gamma attenuation behavior of some stainless and boron steels. Acta Phys Pol A. https://doi.org/10.12693/APhysPolA.127.1342

    Article  Google Scholar 

  34. Sultan Al-Buriahi M, Eke C, Alomairy S, Yildirim A, Alsaeedy HI, Sriwunkum C, Mohammed Sultan Al-Buriahi C (2021) Radiation attenuation properties of some commercial polymers for advanced shielding applications at low energies. Polym Adv Technol. https://doi.org/10.1002/pat.5267

    Article  Google Scholar 

  35. Caciolli A, Baldoncini M, Bezzon GP et al (2012) A new FSA approach for in situ γ ray spectroscopy. Sci Total Environ 414:639–645

    Article  CAS  PubMed  Google Scholar 

  36. Tsabaris C, Zervakis V, Georga H, Pappa FK, Alexakis S, Krasakopoulou E, Patiris DL (2021) In situ characterization using natural radio-tracers in a submarine freshwater spring, Kiveri. Greece J Environ Radioact 233:106583

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

K. Kilel gratefully acknowledges the International Atomic Energy Agency (IAEA) for the PhD sandwich fellowship program under RAF0052 “Supporting Human Resource Development in Nuclear Science and Technology (AFRA)”. I. Kaniu also wishes to thank the International Centre for Theoretical Physics (ICTP) for support through the Associates Programme (2016-2022).

Funding

This project was funded by the IAEA under the coordinated research project (CRP: F2207) Contract Number KEN-24601 and RAF 0052.

Author information

Authors and Affiliations

Authors

Contributions

KKK: Conceptualization, Software, Methodology, Formal analysis, Investigation, Validation, Writing-Original draft preparation. JB: Conceptualization, Resources, Methodology, Validation, Supervision, Writing, Reviewing and Editing the Manuscript. MJG: Supervision, Resources, Reviewing the Manuscript. RleR: Conceptualization, Software, Methodology, Formal analysis, Reviewing and Editing the Manuscript. MIK: Supervision, Writing, Validation, Reviewing and Editing the Manuscript.

Corresponding author

Correspondence to K. K. Kilel.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kilel, K.K., Bezuidenhout, J., Gatari, M.J. et al. A low-cost delta underwater gamma system (DUGS) for in-situ measurement of natural radionuclides in aquatic sediments. J Radioanal Nucl Chem 332, 659–667 (2023). https://doi.org/10.1007/s10967-022-08701-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08701-7

Keywords

Navigation