Skip to main content
Log in

Phosphorylated cellulose carbamate for highly effective capture of U(VI)

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A novel phosphorylated cellulose carbamate (PCC-x) by introducing urea into the functionalized reaction is demonstrated. The effects of urea content on the structures and U(VI) adsorption properties of PCC-x are investigated. The results indicate that urea provides new amino sites along cellulose chains and plays a decisive role in the phosphorylation modification of cellulose carbamate. When the content of urea is optimized, the sample possesses the maximum degree of phosphorylation, resulting in the excellent U(VI) adsorption properties, including high adsorption capacity (1006.9 mg·g−1 at pH = 5 and T = 298 K), fast adsorption dynamics, good adsorption selectivity and reusability.

Graphical abstract

Phosphorylated cellulose carbamate for highly effective capture of U(VI)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhao B, Yuan L, Wang Y, Duan T, Shi W (2021) Carboxylated UiO-66 tailored for U(VI) and Eu(III) trapping: from batch adsorption to dynamic column separation. ACS Appl Mater Interfaces 13(14):16300–16308. https://doi.org/10.1021/acsami.1c00364

    Article  CAS  Google Scholar 

  2. Deng S, Yu C, Niu J, Liao J, Liu X (2020) Microwave assisted synthesis of phosphorylated PAN fiber for highly efficient and enhanced extraction of U(VI) ions from water. Chem Eng J. https://doi.org/10.1016/j.cej.2019.123815

    Article  Google Scholar 

  3. Ganesh R, Robinson KG, Chu L, Kucsmas D, Reed GD (1999) Reductive precipitation of uranium by desulfovibrio desulfuricans: evaluation of cocontaminant effects and selective removal. Water Res 33(16):3447–3458. https://doi.org/10.1016/S0043-1354(99)00024-X

    Article  CAS  Google Scholar 

  4. Post VEA, Vassolo SI, Tiberghien C, Baranyikwa D, Miburo D (2017) Weathering and evaporation controls on dissolved uranium concentrations in groundwater: a case study from northern Burundi. Sci Total Environ 607–608:281–293. https://doi.org/10.1016/j.scitotenv.2017.07.006

    Article  CAS  Google Scholar 

  5. Jain R, Peraniemi S, Jordan N, Vogel M, Weiss S, Foerstendorf H, Lakaniemi AM (2018) Removal and recovery of uranium(VI) by waste digested activated sludge in fed-batch stirred tank reactor. Water Res 142:167–175. https://doi.org/10.1016/j.watres.2018.05.042

    Article  CAS  Google Scholar 

  6. Luo W, Xiao G, Tian F, Richardson JJ, Wang Y, Zhou J, Guo J, Liao X, Shi B (2019) Engineering robust metal–phenolic network membranes for uranium extraction from seawater. Energ Environ Sci 12(2):607–614. https://doi.org/10.1039/c8ee01438h

    Article  CAS  Google Scholar 

  7. Wang G, Liu J, Wang X, Xie Z, Deng N (2009) Adsorption of uranium (VI) from aqueous solution onto cross-linked chitosan. J Hazard Mater 168(2–3):1053–1058. https://doi.org/10.1016/j.jhazmat.2009.02.157

    Article  CAS  Google Scholar 

  8. Koppula S, Jagasia P, Panchangam M, Surya S (2022) synthesis of bimetallic metal-organic frameworks composite for the removal of Copper(II), Chromium(VI), and Uranium(VI) from the aqueous solution using fixed-bed column adsorption. J Solid State Chem 312:123168. https://doi.org/10.1016/j.jssc.2022.123168

    Article  CAS  Google Scholar 

  9. Liu W, Dai X, Bai Z, Wang Y, Yang Z, Zhang L, Xu L, Chen L, Li Y, Gui D, Diwu J, Wang J, Zhou R, Chai Z, Wang S (2017) Highly sensitive and selective uranium detection in natural water systems using a luminescent mesoporous metal-organic framework equipped with abundant lewis basic sites: a combined batch. X-ray Absorpt Spectrosc first Princ Simul Investig, Environ Sci Technol 51(7):3911–3921. https://doi.org/10.1021/acs.est.6b06305

    Article  CAS  Google Scholar 

  10. Xu X, Zhang H, Ao J, Xu L, Liu X, Guo X, Li J, Zhang L, Li Q, Zhao X, Ye B, Wang D, Shen F, Ma H (2019) 3D hierarchical porous amidoxime fibers speed up uranium extraction from seawater. Energ Environ Sci 12(6):1979–1988. https://doi.org/10.1039/c9ee00626e

    Article  CAS  Google Scholar 

  11. Zhao M, Cui Z, Pan D, Fan F, Tang J, Hu Y, Xu Y, Zhang P, Li P, Kong XY, Wu W (2021) An efficient uranium adsorption magnetic platform based on amidoxime-functionalized flower-like Fe3O4@TiO2 core–shell microspheres. ACS Appl Mater Interfaces 13(15):17931–17939. https://doi.org/10.1021/acsami.1c00556

    Article  CAS  Google Scholar 

  12. Zhang Z, Dong Z, Wang X, Dai Y, Cao X, Wang Y, Hua R, Feng H, Chen J, Liu Y, Hu B, Wang X (2019) Synthesis of ultralight phosphorylated carbon aerogel for efficient removal of U(VI): Batch and fixed-bed column studies. Chem Eng J 370:1376–1387. https://doi.org/10.1016/j.cej.2019.04.012

    Article  CAS  Google Scholar 

  13. Liu Y, Zhao Z, Yuan D, Wang Y, Dai Y, Chew JW (2018) Fast and high amount of U(VI) uptake by functional magnetic carbon nanotubes with phosphate group. Ind Eng Chem Res 57(43):14551–14560. https://doi.org/10.1021/acs.iecr.8b03864

    Article  CAS  Google Scholar 

  14. Zhang H, Dai Z, Sui Y, Wang N, Fu H, Ding D, Hu N, Li G, Wang Y, Li L (2018) Scavenging of U(VI) from impregnated water at uranium tailings repository by tripolyphosphate intercalated layered double hydroxides. Ind Eng Chem Res 57(50):17318–17327. https://doi.org/10.1021/acs.iecr.8b04636

    Article  CAS  Google Scholar 

  15. Zhang S, Zhao X, Li B, Bai C, Li Y, Wang L, Wen R, Zhang M, Ma L, Li S (2016) “Stereoscopic” 2D super-microporous phosphazene-based covalent organic framework: design, synthesis and selective sorption towards uranium at high acidic condition. J Hazard Mater 314:95–104. https://doi.org/10.1016/j.jhazmat.2016.04.031

    Article  CAS  Google Scholar 

  16. Zhang M, Li Y, Bai C, Guo X, Han J, Hu S, Jiang H, Tan W, Li S, Ma L (2018) Synthesis of microporous covalent phosphazene-based frameworks for selective separation of uranium in highly acidic media based on size-matching effect. ACS Appl Mater Interfaces 34:28936–28947. https://doi.org/10.1021/acsami.8b06842

    Article  CAS  Google Scholar 

  17. Xu L, Ding SY, Liu J, Sun J, Wang W, Zheng QY (2016) Highly crystalline covalent organic frameworks from flexible building blocks. Chem Commun (Camb) 52(25):4706–4709. https://doi.org/10.1039/c6cc01171c

    Article  CAS  Google Scholar 

  18. Sharma A, Thakur M, Bhattacharya M, Mandal T, Goswami S (2019) Commercial application of cellulose nano-composites : a review. Biotechnol Rep (Amst) 21:e00316. https://doi.org/10.1016/j.btre.2019.e00316

    Article  Google Scholar 

  19. Cai Y, Chen L, Yang S, Xu L, Qin H, Liu Z, Chen L, Wang X, Wang S (2019) Rational synthesis of novel phosphorylated chitosan-carboxymethyl cellulose composite for highly effective decontamination of U(VI). Acs Sustain Chem Eng 7(5):5393–5403. https://doi.org/10.1021/acssuschemeng.8b06416

    Article  CAS  Google Scholar 

  20. Lehtonen J, Hassinen J, Kumar AA, Johansson LS, Mäenpää R, Pahimanolis N, Pradeep T, Ikkala O, Rojas OJ (2020) Phosphorylated cellulose nanofibers exhibit exceptional capacity for uranium capture. Cellulose 27(18):10719–10732. https://doi.org/10.1007/s10570-020-02971-8

    Article  CAS  Google Scholar 

  21. Shen F, Hu Y, Guan P, Ren X (2012) Ti(4+)-phosphate functionalized cellulose for phosphopeptides enrichment and its application in rice phosphoproteome analysis. J Chromatogr B Analyt Technol Biomed Life Sci 902:108–115. https://doi.org/10.1016/j.jchromb.2012.06.033

    Article  CAS  Google Scholar 

  22. Ghanadpour M, Carosio F, Larsson PT, Wagberg L (2015) Phosphorylated cellulose nanofibrils: a renewable nanomaterial for the preparation of intrinsically flame-retardant materials. Biomacromol 16(10):3399–3410. https://doi.org/10.1021/acs.biomac.5b01117

    Article  CAS  Google Scholar 

  23. Wang K, Liu Q (2014) Chemical structure analyses of phosphorylated chitosan. Carbohydr Res 386:48–56. https://doi.org/10.1016/j.carres.2013.12.021

    Article  CAS  Google Scholar 

  24. Fu F, Xu M, Wang H, Wang Y, Ge H, Zhou J (2015) Improved synthesis of cellulose carbamates with minimum urea based on an easy scale-up method. ACS Sustain Chem Eng 3(7):1510–1517. https://doi.org/10.1021/acssuschemeng.5b00219

    Article  CAS  Google Scholar 

  25. Yin C, Li J, Xu Q, Peng Q, Liu Y, Shen X (2007) Chemical modification of cotton cellulose in supercritical carbon dioxide: Synthesis and characterization of cellulose carbamate. Carbohyd Polym 67(2):147–154. https://doi.org/10.1016/j.carbpol.2006.05.010

    Article  CAS  Google Scholar 

  26. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794. https://doi.org/10.1177/004051755902901003

    Article  CAS  Google Scholar 

  27. Feng Y, Zhang X, Shen Y, Yoshino K, Feng W (2012) A mechanically strong, flexible and conductive film based on bacterial cellulose/graphene nanocomposite. Carbohyd Polym 87(1):644–649. https://doi.org/10.1016/j.carbpol.2011.08.039

    Article  CAS  Google Scholar 

  28. Luo X, Yuan J, Liu Y, Liu C, Zhu X, Dai X, Ma Z, Wang F (2017) Improved solid-phase synthesis of phosphorylated cellulose microsphere adsorbents for highly effective Pb2+ removal from water: Batch and fixed-bed column performance and adsorption mechanism. ACS Sustain Chem Eng 5(6):5108–5117. https://doi.org/10.1021/acssuschemeng.7b00472

    Article  CAS  Google Scholar 

  29. Zhou H, Zhu H, Xue F, He H, Wang S (2020) Cellulose-based amphoteric adsorbent for the complete removal of low-level heavy metal ions via a specialization and cooperation mechanism. Chem Eng. https://doi.org/10.1016/j.cej.2019.123879

    Article  Google Scholar 

  30. Mei D, Liu L, Li H, Wang Y, Ma F, Zhang C, Dong H (2021) Efficient uranium adsorbent with antimicrobial function constructed by grafting amidoxime groups on ZIF-90 via malononitrile intermediate. J Hazard Mater 422:126872. https://doi.org/10.1016/j.jhazmat.2021.126872

    Article  CAS  Google Scholar 

  31. Yang P, Liu Q, Liu J, Chen R, Li R, Bai X, Wang J (2019) Highly efficient immobilization of uranium(VI) from aqueous solution by phosphonate-functionalized dendritic fibrous nanosilica (DFNS). J Hazard Mater 363:248–257. https://doi.org/10.1016/j.jhazmat.2018.09.062

    Article  CAS  Google Scholar 

  32. Amaral IF, Granja PL, Barbosa MA (2005) Chemical modification of chitosan by phosphorylation: an XPS, FT-IR and SEM study Chemical modification of chitosan by phosphorylation: an XPS, FT-IR and SEM study. J Biomater Sci Polym Ed 16(12):1575–1593. https://doi.org/10.1163/156856205774576736

    Article  CAS  Google Scholar 

  33. Zhong CR, Cui WR, Niu CP, Yi SM, Liang RP, Qi JX, Chen XJ, Jiang W, Zhang L, Qiu JD (2022) rGO-based covalent organic framework hydrogel for synergistically enhance uranium capture capacity through photothermal desalination. Chem Eng J 428:131178. https://doi.org/10.1016/j.cej.2021.131178

    Article  CAS  Google Scholar 

  34. Zhang GG, Wang YD, Zhang X, Liu LJ, Ma FQ, Zhang CH, Dong HX (2022) Synthesis of a porous amidoxime modified hypercrosslinked benzil polymer and efficient uranium extraction from water. Colloid Surfaces A 641:128508. https://doi.org/10.1016/j.colsurfa.2022.128508

    Article  CAS  Google Scholar 

  35. Wang Y, Zhang Y, Li Q, Li Y, Cao L, Li W (2020) Amidoximated cellulose fiber membrane for uranium extraction from simulated seawater. Carbohyd Polym 245:116627. https://doi.org/10.1016/j.carbpol.2020.116627

    Article  CAS  Google Scholar 

  36. Ma H, Hsiao BS, Chu B (2011) Ultrafine cellulose nanofibers as efficient adsorbents for removal of UO22+ in water. ACS Macro Lett 1(1):213–216. https://doi.org/10.1021/mz200047q

    Article  CAS  Google Scholar 

  37. Dacrory S, Haggag ESA, Masoud AM, Abdo SM, Eliwa AA, Kamel S (2020) Innovative synthesis of modified cellulose derivative as a uranium adsorbent from carbonate solutions of radioactive deposits. Cellulose 27(12):7093–7108. https://doi.org/10.1007/s10570-020-03272-w

    Article  CAS  Google Scholar 

  38. Popescu IC, Filip P, Humelnicu D, Humelnicu I, Scott TB, Crane RA (2013) Removal of uranium (VI) from aqueous systems by nanoscale zero-valent iron particles suspended in carboxy-methyl cellulose. J Nucl Mater 443(1–3):250–255. https://doi.org/10.1016/j.jnucmat.2013.07.018

    Article  CAS  Google Scholar 

  39. Liu SC, Wu MB, Ye H, Liu L, Ma LL, Yao J (2021) Amidoximated cellulose microspheres synthesized via homogenous reactions for High-Performance extraction of uranium from seawater. Chem Eng J. https://doi.org/10.1016/j.cej.2021.131378

    Article  Google Scholar 

  40. Gong H, Lin X, Xie Y, Liu L, Zhou J, Liao H, Shang R, Luo X (2020) A novel self-crosslinked gel microspheres of Premna microphylla turcz leaves for the absorption of uranium. J Hazard Mater 404(Pt A):124151. https://doi.org/10.1016/j.jhazmat.2020.124151

    Article  CAS  Google Scholar 

  41. Wen D, Dong Z, Ao Y, Xie K, Zhai M, Zhao L (2021) Aminotriazole isomers modified cellulose microspheres for selective adsorption of U(VI): Performance and mechanism investigation. Carbohyd Polym 257:117666. https://doi.org/10.1016/j.carbpol.2021.117666

    Article  CAS  Google Scholar 

  42. Zong P, Cao D, Cheng Y, Wang S, Zhang J, Guo Z, Hayat T, Alharbi NS, He C (2019) Carboxymethyl cellulose supported magnetic graphene oxide composites by plasma induced technique and their highly efficient removal of uranium ions. Cellulose 26(6):4039–4060. https://doi.org/10.1007/s10570-019-02358-4

    Article  CAS  Google Scholar 

  43. Chen M, Liu T, Zhang X, Zhang R, Tang S, Yuan Y, Xie Z, Liu Y, Wang H, Fedorovich KV, Wang N (2021) Photoinduced enhancement of uranium extraction from seawater by MOF/black phosphorus quantum dots heterojunction anchored on cellulose nanofiber aerogel. Adv Funct Mater. https://doi.org/10.1002/adfm.202100106

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Youth Innovation Foundation of Heilongjiang Academy of Sciences [CXJQ2021WL01], Science Research Foundation of Heilongjiang Academy of Sciences [KY2022YZN01], Scientific Research Business Fund Project of Heilongjiang Provincial Research Institutes [CZKYF2021-2-C015], Scientific Research Business Fund Project of Heilongjiang Provincial Research Institutes [SJKYYWFC2021WL01]. Sciences Talent Team Construction Platform Project of Heilongjiang Academy of Sciences [RC2022YZN01].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongtao Zhao or Fuqiu Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 523 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, N., Li, J., Tian, B. et al. Phosphorylated cellulose carbamate for highly effective capture of U(VI). J Radioanal Nucl Chem 332, 173–183 (2023). https://doi.org/10.1007/s10967-022-08678-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08678-3

Keywords

Navigation