Skip to main content
Log in

The interaction of selenite and ferrous ions in presence or absence of granite

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A comprehensive assessment of Se-79 environmental behaviors in deep geological repositories is a very important part of radioactive waste safety disposal. In this study, the interaction of Se(IV) with Fe(II) was investigated with the presence or absence of granite from pH 2.0 to 8.0 in a glove box (O2 < 1 ppm). We obtained strongly pH-dependent reaction rate profiles. The true rate constant k values showed a significant difference between the experimental and control groups, that is, whether it contains granite. In the absence of granite, Se(IV) can only be reduced by Fe(II) at higher pH; while when granite is present, reduction can occur at lower pH, even at pH ~ 3. In most instances, Se(0) is the final reduction products. The obtained knowledge will advance and expand our understanding of Se-79 retardation mechanism in the repositories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lee CP, Hu Y, Chen D et al (2021) An Improved Speciation Method Combining IC with ICPOES and Its Application to Iodide and Iodate Diffusion Behavior in Compacted Bentonite Clay. Materials (Basel, Switzerland). 14

  2. Povedano-Priego C, Jroundi F, Lopez-Fernandez M et al (2019) Shifts in bentonite bacterial community and mineralogy in response to uranium and glycerol-2-phosphate exposure. The Sci Total Environ 692:219–232

    Article  CAS  PubMed  Google Scholar 

  3. Kale RC, Kapil B, Ravi K (2021) Response of compacted bentonite to hyperalkalinity and thermal history. Sci Rep 11:15483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mouri G (2020) Reproduction of sediment deposition and prediction of 137Cs concentration in the major urban rivers of Tokyo. Sci Rep 10:9523

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hassan RS, Abass MR, Eid MA et al (2021) Sorption of some radionuclides from liquid waste solutions using anionic clay hydrotalcite sorbent. Appl Radiat Isot 178:109985

    Article  CAS  PubMed  Google Scholar 

  6. Huang G, Li T, Zhang X et al (2022) Effects of Corrosion Products deposited on 304 Stainless Steel on Reduction of Se (IV/VI) in simulated Groundwater, vol 15. Materials, Basel, Switzerland

    Google Scholar 

  7. Francisco PCM, Matsumura D, Kikuchi R et al (2022) Selenide [Se(-II)] immobilization in anoxic, fe(II)-Rich environments: Coprecipitation and Behavior during Phase Transformations. Environ Sci Technol 56:3011–3020

    Article  CAS  PubMed  Google Scholar 

  8. Dardenne K, González-Robles E, Rothe J et al (2015) XAS and XRF investigation of an actual HAWC glass fragment obtained from the Karlsruhe vitrification plant (VEK). J Nucl Mater 460:209–215

    Article  CAS  Google Scholar 

  9. Yang XY, Ge X, He JG et al (2018) Effects of Mineral Compositions on Matrix Diffusion and Sorption of 75Se(IV) in Granite. Environ Sci Technol 52:1320–1329

    Article  CAS  PubMed  Google Scholar 

  10. Wang C, Yang X, Wei F et al (2019) The influence of pH on diffusion of Se-75(IV) in Beishan granite. J Radioanal Nucl Chem 319:365–377

    Article  CAS  Google Scholar 

  11. He JG, Ma B, Kang ML et al (2017) Migration of Se-75(IV) in crushed Beishan granite: Effects of the iron content. J Hazard Mater 324:564–572

    Article  CAS  PubMed  Google Scholar 

  12. Wang CL, Yang XY, He JG et al (2019) The diffusion of Se-75(IV) in Beishan granite - temperature, oxygen condition and ionic strength effects. Radiochim Acta 107:39–54

    Article  CAS  Google Scholar 

  13. He JG, Shi YL, Yang XY et al (2018) Influence of Fe(II) on the Se(IV) sorption under oxic/anoxic conditions using bentonite. Chemosphere 193:376–384

    Article  CAS  PubMed  Google Scholar 

  14. Li Y, He JG, Zhou WQ et al (2021) Influence of colloids and colloids’ coagulation on selenite sorption.Colloid Surf. A-Physicochem. Eng. Asp.618

  15. Manaka M, Takeda M (2016) Consumption and diffusion of dissolved oxygen in sedimentary rocks. J Contam Hydrol 193:35–47

    Article  CAS  PubMed  Google Scholar 

  16. Börsig N, Scheinost AC, Shaw S et al (2018) Retention and multiphase transformation of selenium oxyanions during the formation of magnetite via iron(ii) hydroxide and green rust. Dalton Trans 47:11002–11015

    Article  PubMed  Google Scholar 

  17. Kang M, Chen F, Wu S et al (2011) Effect of pH on Aqueous Se(IV) reduction by Pyrite. Environ Sci Technol 45:2704–2710

    Article  CAS  PubMed  Google Scholar 

  18. Badaut V, Schlegel ML, Descostes M et al (2012) In situ Time-Resolved X-ray near-edge absorption spectroscopy of Selenite reduction by Siderite. Environ Sci Technol 46:10820–10826

    Article  CAS  PubMed  Google Scholar 

  19. Charlet L, Kang M, Bardelli F et al (2012) Nanocomposite pyrite-greigite reactivity toward Se(IV)/Se(VI). Environ Sci Technol 46:4869–4876

    Article  CAS  PubMed  Google Scholar 

  20. Han DS, Batchelor B, Abdel-Wahab A (2011) Sorption of selenium(IV) and selenium(VI) to mackinawite (FeS): Effect of contact time, extent of removal, sorption envelopes. J Hazard Mater 186:451–457

    Article  CAS  PubMed  Google Scholar 

  21. Scheinost AC, Charlet L (2008) Selenite reduction by mackinawite, magnetite and siderite: XAS characterization of nanosized redox products. Environ Sci Technol 42:1984–1989

    Article  CAS  PubMed  Google Scholar 

  22. Liang L, Yang W, Guan X et al (2013) Kinetics and mechanisms of pH-dependent selenite removal by zero valent iron. Water Res 47:5846–5855

    Article  CAS  PubMed  Google Scholar 

  23. Albertson OE (2007) Changes in the biochemical oxygen demand procedure in the 21st edition of standard methods for the examination of Water and Wastewater. Water Environ Res 79:453–455

    Article  CAS  PubMed  Google Scholar 

  24. Ruj B, Bishayee B, Chatterjee RP et al (2022) An economical strategy towards the managing of selenium pollution from contaminated water: a current state-of-the-art review. J Environ Manage 304:114143

    Article  CAS  PubMed  Google Scholar 

  25. Liu A, Chen X, Zhang Z et al (2006) Selective synthesis and magnetic properties of FeSe2 and FeTe2 nanocrystallites obtained through a hydrothermal co-reduction route. Solid State Commun 138:538–541

    Article  CAS  Google Scholar 

  26. Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (Version 2): A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Water-resources investigations report, U.S.Geological Survey, Denver

  27. Åke O, Bengt N, LarsOlof Ö, Evgeniy O, Erik R (2005) Chemical Thermodynamics of Selenium. Elsevier, Amsterdam

    Google Scholar 

  28. Chivot J (2004) Thermodynamique des produits de corrosion. Sci. Tech. Ser. ANDRA

  29. Adhikamsetty RK, Gollapalli NR, Jonnalagadda SB (2008) Complexation kinetics of Fe2+ with 1,10-phenanthroline forming ferroin in acidic solutions. Int J Chem Kinet 40:515–523

    Article  CAS  Google Scholar 

  30. Chakrabrty S, Bardelli F, Charlet L (2010) Reactivities of Fe(II) on calcite: Selenium Reduction. Environ Sci Technol 44:1288–1294

    Article  Google Scholar 

  31. Ma B, Nie Z, Liu C et al (2014) Kinetics of FeSe2 oxidation by ferric iron and its reactivity compared with FeS2. Sci China Chem 57:1300–1309

    Article  CAS  Google Scholar 

  32. Guo Y, Cui K, Hu M et al (2017) Fe(III) ions enhanced catalytic properties of (BiO)(2)CO3 nanowires and mechanism study for complete degradation of xanthate. Chemosphere 181:190–196

    Article  CAS  PubMed  Google Scholar 

  33. Niazi NK, Burton ED (2016) Arsenic sorption to nanoparticulate mackinawite (FeS): an examination of phosphate competition. Environ Pollut 218:111–117

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Funding for this research was supported by the National Natural Science Foundation of China (22106057) and the Fundamental Research Funds for the Central Universities (lzujbky-2021-sp40).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangang He.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Supplementary data

Additional materials referenced in the text are available free of charge.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, X., He, J. The interaction of selenite and ferrous ions in presence or absence of granite. J Radioanal Nucl Chem 332, 1055–1062 (2023). https://doi.org/10.1007/s10967-022-08673-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08673-8

Keywords

Navigation