Skip to main content
Log in

Nd2O3 immobilized by granite based glass–ceramics: composition, structure, and performance

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Natural granite was considered for immobilizing nuclear waste Nd2O3 (Nd3+ simulated for An3+). The structure and performance of pure granite were compared with Nd2O3 doped granite sintered at 1500 °C. The introduced Nd3+ distributed mainly in the glass network below the loading capacity (19 wt.%). Beyond that, tetrahedral SiO4 units existed in a sheet form, while extra Nd3+ precipitated as Nd2Si2O7. The doped Nd2O3 improved the hardness (6.29–7.07 GPa) and density (2.19–2.71 g/cm3) of matrix. Moreover, the solidified form presented NRNd below 1.7 × 10–6 g m−2 d−1 after 28 days. This work disclosed a potential host matrix for nuclear waste.

Graphics abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Liu ZX, Liu ZQ, Huang WH et al (2005) The key countermeasures of controlling fossil fuel environment pollution in China. Resour Ind 4:49–52

    Google Scholar 

  2. Temporal M, Canaud B, Ramis R (2020) Time evolution of the fuel areal density and electronic temperature provided by secondary nuclear fusion reaction. Eur Phys J D 73(10):1–10

    Google Scholar 

  3. Nuckols L, Crespillo ML, Xu C et al (2020) Coupled effects of electronic and nuclear energy deposition on damage accumulation in ion-irradiated SiC. Acta Mater 199:96–106

    Article  CAS  Google Scholar 

  4. Budnitz RJ, Rogner HH, Shihab EA (2018) Expansion of nuclear power technology to new countries-SMRs, safety culture issues, and the need for an improved international safety regime. Energy Pol 119:535–544

    Article  Google Scholar 

  5. Krauskopf KB (1990) Disposal of high-level nuclear waste: is it possible. Science 249:1231–1233

    Article  CAS  Google Scholar 

  6. Ewing RC (2005) Plutonium and “minor” actinides: safe sequestration. Earth Planet Sci Lett 229(3):165–181

    Article  CAS  Google Scholar 

  7. Murali MS, Bhattacharayya A, Raut DR et al (2012) Characterization of high level waste for minor actinides by chemical separation and alpha spectrometry. J Radioanal Nucl Ch 294(1):149–153

    Article  CAS  Google Scholar 

  8. Laverov NP, Yudintsev SV, Livshits TS et al (2010) Synthetic minerals with the pyrochlore and garnet structures for immobilization of actinide-containing wastes. Geochem Int 48(1):1–14

    Article  Google Scholar 

  9. El Afifi EM, Attallah MF, Borai EH et al (2016) Utilization of natural hematite as reactive barrier for immobilization of radionuclides from radioactive liquid waste. J Environ Radioactiv 151:156–165

    Article  Google Scholar 

  10. Ewing RC (2001) The design and evaluation of nuclear-waste forms: clues from mineralogy. Can Mineral 39:697–715

    Article  CAS  Google Scholar 

  11. Su S, Ding Y, Shu XY et al (2014) Nd and Ce simultaneous substitution driven structure modifications in Gd2-xNdxZr2-yCeyO7. J Eur Ceram Soc 35(6):1847–1853

    Article  Google Scholar 

  12. Hench LL, Clark DE (1984) High level waste immobilization forms. Nucl Eng Technol 5(2):149–173

    CAS  Google Scholar 

  13. Yang D, Xia Y, Wen J et al (2017) Role of ion species in radiation effects of Lu2Ti2O7 pyrochlore. J Alloy Compd 693:565–572

    Article  CAS  Google Scholar 

  14. Shu XY, Fan L, Hou CX et al (2017) Microstructure and performance studies of (Mo, Ru, Pd, Zr) tetra-doped gadolin-ium zirconate pyrochlore. Adv Appl Ceram 116:272–277

    Article  CAS  Google Scholar 

  15. Trocellier P (2001) Chemical durability of high level nuclear waste forms. Annales de Chimie Science des Matériaux 26(2):113–130

    Article  CAS  Google Scholar 

  16. Zhang YX, Liu SL, OuYang SL et al (2020) Transformation of unstable heavy metals in solid waste into stable state by the preparation of glass-ceramics-ScienceDirect. Mater Chem Phys 252:123061

    Article  CAS  Google Scholar 

  17. Wang J, Chen L, Su R et al (2018) The Beishan underground research laboratory for geological disposal of high-level radioactive waste in China: planning, site selection, site characterization and in situ tests. J Rock Mech Geotech Eng 10(3):411–435

    Article  CAS  Google Scholar 

  18. Luo X, Min M, Zheng Z et al (2004) Isotopic geochemistry of the deep granite under the pre-selected site of deep geological repositories for high-level radioactive waste. Acta Geol Sin 18(5):689–698

    Google Scholar 

  19. Wang W, Ding Z, Wang Y et al (2021) Transport behaviors of Cs+ in granite porous media: Effects of mineral composition, HA, and coexisting cations. Chemosphere 268:129341

    Article  CAS  Google Scholar 

  20. Tsai SC, Wang TH, Wei YY et al (2008) Kinetics of Cs adsorption/desorption on granite by a pseudo first order reaction model. J Radioanal Nucl Ch 275(3):555–562

    Article  CAS  Google Scholar 

  21. Lu XR, Chen SZ, Shu XY et al (2018) Immobilisation of nuclear waste by microwave sintering with a natural magmatic rock. Phil Mag Lett 98(4):155–160

    Article  CAS  Google Scholar 

  22. Li LL, Shu XY, Cheng YR et al (2022) High immobilizing capacity of natural granite as glass-ceramic matrix to simulated trivalent actinide waste. Radiat Phys Chem 195:110067

    Article  CAS  Google Scholar 

  23. Hestnes KH, Aasly K, Sandøy R et al (2013) Occurrence of iron in industrial granitic pegmatite. Miner Eng 52:21–30

    Article  CAS  Google Scholar 

  24. Osmanlioglu AE (2006) Treatment of radioactive liquid waste by sorption on natural zeolite in Turkey. J Hazard Mater 137:332–335

    Article  CAS  Google Scholar 

  25. Zhang JF, Pang QB (2004) Zircon SHRIMP U-Pb dating of the granite porphyry in Baiyinbaolidao gold deposit, Inner Mongolia: the age of the ore-forming host rocks. Geol Bull China 23(2):189–192

    Google Scholar 

  26. Moghadam MC, Tahmasbi Z, Ahmadi KA et al (2018) Petrogenesis of Rabor-Lalehzar magmatic rocks (SE Iran): constraints from whole rock chemistry and Sr-Nd isotopes. Chemie der Erde-Geochem 78(1):58–77

    Article  CAS  Google Scholar 

  27. Chen B, Xu B (1996) Basic characteristics and tectonic significance of two types of Paleozoic granitoids in Suzuo Qi area, Inner Mongolia. Acta Petrol Sin 12(4):16

    Google Scholar 

  28. Shi G, Miao L, Zhang F et al (2004) Emplacement age and tectonic implications of the Xilinhot A-type granite in Inner Mongolia, China. Sci Bull 49(7):7

    Article  Google Scholar 

  29. Gion AM, Piccoli PM, Candela PA (2022) Characterization of biotite and amphibole compositions in granites. Contrib Mineral Petr. https://doi.org/10.1007/s00410-022-01908-7

    Article  Google Scholar 

  30. Lu XR, Cui CL, Zhang D et al (2010) Structural evolution of radioactive zirconite in geological environment and its ability to resist γ-ray irradiation. J Southwest Univ Sci Technol 25(3):33–38

    CAS  Google Scholar 

  31. Qasrawi AF, Kmail BH, Mergen A (2012) Synthesis and characterization of Bi1.5Zn0.92Nb1.5-xSnxO6.92-x/2 pyrochlore ceramics. Ceram Int 38:4181–4187

    Article  CAS  Google Scholar 

  32. Jain S, Jha AK (2008) Structural and electrical properties of SrBi2VxNb2-xO9 ferroelectric ceramics: effect of temperature and frequency. J Electroceram 24(1):58–63

    Article  Google Scholar 

  33. Kerr RA (2000) Science and policy clash at Yucca mountain. Science 288:602

    Article  CAS  Google Scholar 

  34. ASTM C1285–2002, Standard test methods for determining chemical durability of nuclear, hazardous, and mixed waste glasses and multiphase glass ceramics: the product consistency test (PCT) [S]. 2008

  35. Pan X, Cui W, Zhang C et al (2020) Formation kinetics and transition mechanism of CaO·SiO2 in low-calcium system during high-temperature sintering. J Cent South Univ 27(11):3269–3277

    Article  CAS  Google Scholar 

  36. Dias JDM, Melo GHA, Lodi TA et al (2016) Thermal and structural properties of Nd2O3-doped calcium boroaluminate glasses. J Rare Earth 34(5):521–528

    Article  CAS  Google Scholar 

  37. Felsche J, Hirsiger W (1969) The polymorphs of the rare-earth pyrosilicates R.E.2Si2O7, [R.E.: La, Ce, Pr, Nd, Sm]. J Less-Common Met 18:131

    Article  CAS  Google Scholar 

  38. Ke SJ, Wang YM, Pan ZD et al (2017) Effect of mechanical activation on solid-state synthesis process of neodymium disilicate ceramic pigment. Dyes Pigments 145:160–167

    Article  CAS  Google Scholar 

  39. He Y, Shu X, Li LL et al (2022) Doping effect of neodymium ions as simulated an3+ on the structure and performance of the granite solidified substrate. SSRN Electr J. https://doi.org/10.2139/ssrn.4045428

    Article  Google Scholar 

  40. Kaur P, Kaur S, Singh GP et al (2014) Cerium and samarium codoped lithium aluminoborate glasses for white light emitting devices. J Alloys Compd 588:394–398

    Article  CAS  Google Scholar 

  41. Liang LY, Liu ZM, Ca HT et al (2010) Microstructural, optical, and electrical properties of SnO thin films prepared on quartz via a two-step method. Acs Appl Mater Inter 2(4):1060

    Article  CAS  Google Scholar 

  42. Sharaf El Deen LM, Al Salhi MS, Meawad M et al (2008) IR and UV spectral studies for rare earths-doped tellurite glasses. J Alloys Compd 465:333–339

    Article  Google Scholar 

  43. Vicente Rodríguez MA, Suarez M, Bañares Muñoz MA et al (1996) Comparative FT-IR study of the removal of octahedral cations and structural modifications during acid treatment of several silicates. Spectrochim Acta A 52(13):1685–1694

    Article  Google Scholar 

  44. Chen H, Sun Z, Shao J et al (2011) Investigation on FT-IR spectroscopy for eight different sources of SiO2. Bull Chin Ceram Soc 30(4):934–937

    CAS  Google Scholar 

  45. Etchepare J (1970) Interprétation des spectres de diffusion Raman de verres de silice binaires. Spectrochim Acta Part A Mol Spectrosc 26(11):2147–2154

    Article  CAS  Google Scholar 

  46. Mcmillan P (1984) Structural studies of silicate glasses and melts-Applications and limitations of Raman spectroscopy. Am Mineral 69(69):622–644

    CAS  Google Scholar 

  47. Nakamoto K (2008) Infrared and Raman spectra of inorganic and coordination compounds. Theory Appl Inorg Chem 5:88–97

    Google Scholar 

  48. Wang WT, Zhang H, Yuan Y et al (2018) Research progress of Raman spectroscopy in drug analysis. AAPS PharmSciTech 19:2921

    Article  Google Scholar 

  49. Denry IL, Holloway JA (2004) Elastic constants, Vickers hardness, and fracture toughness of fluorrichterite-based glass-ceramics. Dent Mater 20(3):213–219

    Article  CAS  Google Scholar 

  50. Le P, Zhang K, He Z et al (2017) Self-propagating high-temperature synthesis of ZrO2 incorporated Gd2Ti2O7 pyrochlore. J Adv Ceram 7(1):41–49

    Google Scholar 

  51. Yamane M, Mackenzie JD (1974) Vicker’s hardness of glass. J Non-Cryst Solids 15(2):153–164

    Article  CAS  Google Scholar 

  52. Lian QH, Zhang XQ, Ji HJ (2020) Effect of V2O5 on crystallization tendency and chemical durability of Mo-bearing aluminoborosilicate glass. Mater Res Express 7:1–9

    Article  Google Scholar 

  53. Shaaban KS, Yousef ES (2020) Optical properties of Bi2O3 doped boro tellurite glasses and glass ceramics. Optik 203:163976

    Article  CAS  Google Scholar 

  54. Neuville DR, Cormier L, Massiot D (2004) Al environment in tectosilicate and peraluminous glasses: A 27Al MQ-MAS NMR, Raman, and XANES investigation. Geochim Cosmochim Acta 68(24):5071–5079

    Article  CAS  Google Scholar 

  55. Li B, Wang Z, Xia Q (2019) Influence of Nd2O3 addition on sintering kinetics, microstructures, and properties of CaO-B2O3-SiO2 glass-ceramics for packages. J Electron Mater 48(12):7923–7928

    Article  CAS  Google Scholar 

  56. Scannell G, Laille D, Célarié F et al (2017) Interaction between deformation and crack initiation under Vickers indentation in Na2O-TiO2-SiO2 glasses. Front Mater 4:6

    Article  Google Scholar 

  57. Tiegel M, Hosseinabadi R, Kuhn S et al (2015) Young׳s modulus, Vickers hardness and indentation fracture toughness of alumino silicate glasses. Ceram Int 41(6):7267–7275

    Article  CAS  Google Scholar 

  58. Ojovan MI, Lee WE (2011) Glassy waste forms for nuclear waste immobilization. Metall Mater Trans A 42:837–851

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the supports from the National Natural Science Foundation of China (No. 21976146), the Project of State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology (No. 21fksy13) and the State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology (CHBK-2020-005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xirui Lu or Faqin Dong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Shu, X., Li, L. et al. Nd2O3 immobilized by granite based glass–ceramics: composition, structure, and performance. J Radioanal Nucl Chem 332, 105–117 (2023). https://doi.org/10.1007/s10967-022-08657-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08657-8

Keywords

Navigation