Skip to main content
Log in

Effective Th(IV) adsorption by oxidized biochar prepared from palm tree fibers

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The removal of Th(IV) from aqueous solutions by oxidized biochar fibres derived from palm tree fibers has been investigated at pH 3 and under ambient conditions by batch type experiments and FTIR spectroscopy. The experimental data have shown that the Th(IV) adsorption by oxidized biochar fibers (OBF) is well fitted by the Langmuir isotherm model (qmax = 0.18 mol kg−1 or 42 g kg−1), is an entropy-driven process and follows the 2nd order kinetics. Furthermore, FTIR spectroscopic data indicate that the sorption occurs via formation of inner-sphere complexes between Th(VI) and the carboxylic surface moieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu W-J, Jiang H, Yu H-Q (2015) Development of biochar-based functional materials: toward a sustainable platform carbon material. Chem Rev 115:12251–12285. https://doi.org/10.1021/acs.chemrev.5b00195

    Article  CAS  PubMed  Google Scholar 

  2. Anastopoulos I, Pashalidis I, Hosseini-Bandegharaei A et al (2019) Agricultural biomass/waste as adsorbents for toxic metal decontamination of aqueous solutions. J Mol Liq 295:111684. https://doi.org/10.1016/j.molliq.2019.111684

    Article  CAS  Google Scholar 

  3. Stasi C, Georgiou E, Ioannidis I, Pashalidis I (2021) Uranium removal from laboratory and environmental waters by oxidised biochar prepared from palm tree fibres. J Radioanal Nucl Chem 331:375–381. https://doi.org/10.1007/s10967-021-08076-1

    Article  CAS  Google Scholar 

  4. Paschalidou P, Pashalidis I, Manariotis ID, Karapanagioti HK (2020) Hyper sorption capacity of raw and oxidized biochars from various feedstocks for U(VI). J Environ Chem Eng 8:103932. https://doi.org/10.1016/j.jece.2020.103932

    Article  CAS  Google Scholar 

  5. Liatsou I, Pashalidis I, Dosche C (2020) Cu(II) adsorption on 2-thiouracil-modified Luffa cylindrica biochar fibres from artificial and real samples, and competition reactions with U(VI). J Hazard Mater 383:120950. https://doi.org/10.1016/j.jhazmat.2019.120950

    Article  CAS  PubMed  Google Scholar 

  6. Philippou K, Anastopoulos I, Dosche C, Pashalidis I (2019) Synthesis and characterization of a novel Fe3O4-loaded oxidized biochar from pine needles and its application for uranium removal. Kinetic, thermodynamic, and mechanistic analysis. J Environ Manag 252:109677. https://doi.org/10.1016/j.jenvman.2019.109677

    Article  CAS  Google Scholar 

  7. Ioannou K, Hadjiyiannis P, Liatsou I, Pashalidis I (2019) U(VI) adsorption by biochar fiber–MnO2 composites. J Radioanal Nucl Chem 320:425–432. https://doi.org/10.1007/s10967-019-06479-9

    Article  CAS  Google Scholar 

  8. Liatsou I, Pashalidis I, Nicolaides A (2018) Triggering selective uranium separation from aqueous solutions by using salophen-modified biochar fibers. J Radioanal Nucl Chem 318:2199–2203. https://doi.org/10.1007/s10967-018-6186-5

    Article  CAS  Google Scholar 

  9. Philippou K, Savva I, Pashalidis I (2018) Uranium(VI) binding by pine needles prior and after chemical modification. J Radioanal Nucl Chem 318:2205–2211. https://doi.org/10.1007/s10967-018-6145-1

    Article  CAS  Google Scholar 

  10. Liatsou I, Michail G, Demetriou M, Pashalidis I (2016) Uranium binding by biochar fibres derived from Luffa cylindrica after controlled surface oxidation. J Radioanal Nucl Chem 311:871–875. https://doi.org/10.1007/s10967-016-5063-3

    Article  CAS  Google Scholar 

  11. Katz JJ, Seaborg GT, Morss LR (1986) The chemistry of the actinide elements. Chapman And Hall, London

    Book  Google Scholar 

  12. Moir RW, Teller E (2005) Thorium-fueled underground power plant based on molten salt technology. Nucl Technol 151:334–340. https://doi.org/10.13182/nt05-a3655

    Article  CAS  Google Scholar 

  13. Hadjittofi L, Pashalidis I (2016) Thorium removal from acidic aqueous solutions by activated biochar derived from cactus fibers. Desalin Water Treat 57:27864–27686. https://doi.org/10.1080/19443994.2016.1168580

    Article  CAS  Google Scholar 

  14. Liatsou I, Christodoulou E, Pashalidis I (2018) Thorium adsorption by oxidized biochar fibres derived from Luffa cylindrica sponges. J Radioanal Nucl Chem 317:1065–1070. https://doi.org/10.1007/s10967-018-5959-1

    Article  CAS  Google Scholar 

  15. Philippou K, Konstantinou A, Pashalidis I (2020) Thorium adsorption by oxidized biochar pine needles—the effect of particle size. Desalin Water Treat 194:411–416. https://doi.org/10.5004/dwt.2020.25445

    Article  CAS  Google Scholar 

  16. Reddy N, Yang Y (2015) Innovative biofbers from renewable resources: fibers from palm trees. Natural cellulose fibers from renewable resources. Springer, Berlin

    Google Scholar 

  17. Savvin SB (1961) Analytical use of arsenazo III: determination of thorium, zirconium, uranium and rare earth elements. Talanta 8:673–685

    Article  CAS  Google Scholar 

  18. Moulin C, Amekraz B, Hubert S, Moulin V (2001) Study of thorium hydrolysis species by electrospray-ionization mass spectrometry. Anal Chim Acta 441:269–279. https://doi.org/10.1016/s0003-2670(01)01084-4

    Article  CAS  Google Scholar 

  19. Neck V, Müller R, Bouby M et al (2002) Solubility of amorphous Th(IV) hydroxide—application of LIBD to determine the solubility product and EXAFS for aqueous speciation. Radiochim Acta 90:485–494. https://doi.org/10.1524/ract.2002.90.9-11_2002.485

    Article  CAS  Google Scholar 

  20. Lagergren S (1898) About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar 24:1–39

    Google Scholar 

  21. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465. https://doi.org/10.1016/s0032-9592(98)00112-5

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Efthalia Georgiou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Georgiou, E., Pashalidis, I. Effective Th(IV) adsorption by oxidized biochar prepared from palm tree fibers. J Radioanal Nucl Chem 332, 1413–1417 (2023). https://doi.org/10.1007/s10967-022-08656-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08656-9

Keywords

Navigation