Skip to main content
Log in

Determination of uranium in calcareous rocks/minerals after separation by nitrilotriacetic-mediated sample dissolution and cation-exchange

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Τhe determination of uranium in calcareous samples has been investigated by means of alpha-spectroscopy after dissolution of the samples by nitrilotriacetic solution (NTA) and uranium separation by cation-exchange. Method recovery, uranium analysis and isotopic ratio composition of the samples was performed using a standard tracer solution (U-232). Comparison of the data with corresponding data obtained from experiments after EDTA-dissolution indicated lower selectivity for uranium, but higher recovery yields for phosphate rock samples. Moreover, using NTA results in the co-extraction of radium and thorium isotopes which are present in the samples, assuming broader applicability of the present method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lysandrou M, Pashalidis I (2008) Uranium chemistry in stack solutions and leachates of phosphogypsum disposed at a coastal area in Cyprus. J Environ Radioact 99(2):359–366

    Article  CAS  PubMed  Google Scholar 

  2. Gorecka H, Gorecki H (1984) Determination of uranium in phosphogypsum. Talanta 31(12):1115–1117

    Article  CAS  PubMed  Google Scholar 

  3. van Calsteren P, Thomas L (2006) Uranium-series dating applications in natural environmental science. Earth-Sci Rev 75:155–175

    Article  Google Scholar 

  4. Hennig GJ, Bangert U, Herr W, Freundlich J. Uranium series dating of calcite formations in caves: recent results and a comparative study on age determinations via 230Th/234U, 14C, TL and ESR. ArchéoSciences, revue d'Archéométrie. 1980;4(1):91-100.

  5. Sanna L, Saez F, Simonsen S, Constantin S, Calaforra J-M, Forti P, Lauritzen S-E (2010) Uranium-series dating of gypsum speleothems: methodology and examples. Int J Speleol 39(1):35–46

    Article  Google Scholar 

  6. Zhao M-Y, Zheng Y-F, Zhao Y-Y (2016) Seeking a geochemical identifier for authigenic carbonate. Nat Commun 7:10885. doi: https://doi.org/10.1038/ncomms10885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kitano Y, Oomori T (1971) The Coprecipitation of Uranium with Calcium Carbonate. J Oceanogr Soc Jpn 27(1):34–42

    Article  CAS  Google Scholar 

  8. Rajkovic MB, Karljikovic-Rajic K, Vladjisavlevic GT, Ciric IS (1999) Investigation of Radionuclides in Phosphogypsum. Measur Tech 42:299–305

    Article  Google Scholar 

  9. Singhal RK, Sharma PK, Bassan MKT, Basu H, Reddy AVR (2011) Comparative determination of uranium in rock phosphates and columbite by ICP-OES, alpha & gamma spectrometry. J Radioanal Nucl Chem 288:149–156

    Article  CAS  Google Scholar 

  10. Andreou G, Efstathiou E, Pashalidis I (2012) A simplified determination of uranium in phosphate rock and phosphogypsum by alpha-spectroscopy after its separation by liquid-extraction. J Radioanal Nucl Chem 291:865–867

    Article  CAS  Google Scholar 

  11. El-Afifi E, Hilal MA, Attallah MF, EL-Reefy SA (2009) Characterization of phosphogypsum wastes associated with phosphoric acid and fertilizers production. J Env Rad 100:407–412

    Article  CAS  Google Scholar 

  12. Mazzilli B, Palmiro V, Saueia C, Nisti MB (2018) Radiochemical characterization of Brazilian phosphogypsum. J Environ Radioact 49:113–122

    Article  Google Scholar 

  13. Trifi M, Dermech C, Abdelkrim C, Azouzi R, Hjiri B (2018) Extraction procedures of toxic and mobile heavy metal fraction from complex mineralogical tailings affected by acid mine drainage. Arab J Geosci 11:328

    Article  Google Scholar 

  14. Jagetiya B, Sharma A (2013) Optimization of chelators to enhance uranium uptake from tailings for phytoremediation. Chemosphere 91:692–696

    Article  CAS  PubMed  Google Scholar 

  15. Ji Y, Yun C, Le J, Qian M, Huan Y, Yang W, Yin X, Liu Y, Wang X (2017) Highly effective scale inhibition performance of amino trimethylenephosphonic acid on calcium carbonate. Desalination 422:165–173

    Article  CAS  Google Scholar 

  16. Papanicolaou F, Antoniou S, Pashalidis I (2009) Experimental and theoretical studies on physico-chemical parameters affecting the solubility of phosphogypsum. J Environ Radioact 100:601–605

    Article  Google Scholar 

  17. Paschalidou P, Pashalidis I (2019) Selective separation and determination of uranium in calcite and gypsum after EDTA-mediated sample dissolution and cation-exchange. J Radioanal Nucl Chem 320:807–812

    Article  CAS  Google Scholar 

  18. Kiliari T, Pashalidis I (2010) Simplified alpha-spectroscopic analysis of uranium in natural waters after its separation by cation-exchange. Radiat Meas 45:966–968

    Article  CAS  Google Scholar 

  19. Pashalidis I, Tsertos H (2004) Radiometric determination of uranium in natural waters after enrichment and separation by cation-exchange and extraction techniques. J Radioanal Nucl Chem 260:439–442

    Article  CAS  Google Scholar 

  20. Kiliari T, Pashalidis I (2010) Alpha spectroscopic analysis of actinides (Th, U and Pu) after separation from aqueous solutions by cation-exchange and liquid extraction. J Radioanal Nucl Chem 284:547–551

    Article  CAS  Google Scholar 

  21. Anderegg G (1982) Critical survey of stability constants of NTA complexes. Pure Appl Chem 54:2693–2758

    Article  CAS  Google Scholar 

  22. Kiliari T, Pashalidis I (2012) Selective separation of actinyl(V,VI) cations from aqueous solutions by Chelex-100. Radiochim Acta 100:439–444

    Article  CAS  Google Scholar 

  23. Paschalidou P, Pashalidis I (2019) Recovery of uranium from phosphate rock with EDTA-mediated dissolution and cation exchange. Hydrometallurgy 189:105118

    Article  CAS  Google Scholar 

  24. Paschalidou P, Pashalidis I (2019) Alpha-spectroscopic analysis of uranium in ground- and seawater samples after EDTA-masking of interfering cations. J Radioanal Nucl Chem 320:807–812

    Article  CAS  Google Scholar 

  25. Azouazi M, Ouahidi Y, Fakhi S, Andres Y, Abbe J, Ch, Benmansour M (2001) Natural radioactivity in phosphates, phosphogypsum and natural waters in Morocco. J Environ Radioact 54:231–242

    Article  CAS  PubMed  Google Scholar 

  26. Rutherford PM, Dudas MJ, Samek RA (1994) Environmental impacts of phosphogypsum. Sci Total Environ 149:1–38

    Article  CAS  Google Scholar 

  27. Ptáček P (2016) ‘Phosphate Rocks’. In: Ptacek P (ed) Apatites and their Synthetic Analogues - Synthesis, Structure, Properties and Applications. IntechOpen, London

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Pashalidis.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michael, A., Pashalidis, I. Determination of uranium in calcareous rocks/minerals after separation by nitrilotriacetic-mediated sample dissolution and cation-exchange. J Radioanal Nucl Chem 332, 1399–1403 (2023). https://doi.org/10.1007/s10967-022-08643-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08643-0

Keywords

Navigation