Skip to main content
Log in

Treatment of spent decontamination solutions based on citric acid with composite polyacrylonitrile: transient metal oxidic nanoparticles sorbents

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Composite sorbents based on the nanoparticles of NiO, NiO–TiO2 and ZrO2–TiO2 embedded in polyacrylonitrile were chosen for the treatment of spent decontamination solutions based on citric acid. Active oxidic materials were prepared by photoinduced synthesis (NiO, NiO–TiO2) or hydrolytic method (ZrO2–TiO2). Weight distribution ratios for radionuclides 241Am, 60Co, 137Cs and 90Sr/90Y were investigated during the experiments performed in pH range 2–12. High sorption capacities up to 9 mmol g–1 for 137Cs were found by sorption isotherm experiments. Dynamic experiments were carried out with simulated spent decontamination solutions containing citric acid. Elution of > 85% radionuclide waste with mineral acids or complexing agents was in 5–6 times lower volume compared to treated spent solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brynych V, Pospěchová J, Procházková L, Čuba V, Szatmáry L (2022) Sorption of Cs(I), Sr(II) and Eu(III) on Modified Nickel Oxide. Nanocon 2014 conference proceedings. http://nanocon2014.tanger.cz/files/proceedings/20/reports/3335.pdf. Accessed 17 Mar 2022

  2. Ai L, Zeng Y (2012) Hierarchical porous NiO architectures as highly recyclable adsorbents for effective removal of organic dye from aqueous solution. Chem Eng J 215–216:269–278

    Google Scholar 

  3. Engates KE, Shipley HJ (2011) Adsorption of Pb, Cd, Cu, Zn, and Ni to titanium dioxide nanoparticles: effect of particle size, solid concentration, and exhaustion. Environ Sci Pollut Res Int 3:386–395

    Article  Google Scholar 

  4. Mahmood T, Saddique M, Naeem A (2011) Cation exchange removal of Cd from aqueous solution by NiO. J Hazard Mater 2–3:824–828

    Article  Google Scholar 

  5. Wołowicz A, Wawrzkiewicz M, Hubicki Z, Siwińska-Ciesielczyk K, Kubiak A, Jesionowski T (2022) Enhanced removal of vanadium(V) from acidic streams using binary oxide systems of TiO2–ZrO2 and TiO2–ZnO type. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2021.119916

    Article  Google Scholar 

  6. Dekontaminace radioaktivních látek, Bojový řád jednotek požární ochrany - taktické postupy zásahu. http://www.hzscr.cz/soubor/l9-dekontaminace-ral-pdf.aspx. Accessed 17 Mar 2022

  7. Fišera O, Kareš J, Procházková L, Čuba V, Popovich K, Bárta J (2018) Sorption properties of selected oxidic nanoparticles for the treatment of spent decontamination solutions based on citric acid. J Radioanal Nucl Chem 318:2443–2448. https://doi.org/10.1007/s10967-018-6303-5

    Article  CAS  Google Scholar 

  8. Neppolian B, Wang Q, Yamashita H, Choi H (2007) Synthesis and characterization of TiO2–ZrO2 binary oxide semiconductor nanoparticles: application and interparticle electron transfer process. Appl Catal A 333:264–271

    Article  CAS  Google Scholar 

  9. Čuba V, Procházková L, Bárta J, Vondrášková A, Pavelková T, Mihóková E, Jarý V, Nikl M (2014) UV radiation: a promising tool in the synthesis of multicomponent nano-oxides. J Nanopart Res. https://doi.org/10.1007/s11051-014-2686-6

  10. Bárta J, Prouzová Procházková L, Škodová M, Děcká K, Popovich K, Janoušková Pavelková T, Beck P, Čuba V (2022) Advanced photochemical processes for the manufacture of nanopowders: an evaluation of long-term pilot plant operation. React Chem Eng 7:968–977

    Article  Google Scholar 

  11. Šebesta F (1997) Composite sorbents of inorganic ion-exchangers and polyacrylonitrile binding matrix. I. Methods of modification of properties of inorganic ion-exchangers for application in column packed beds. J Radioanal Nucl Chem 220:77–88

    Article  Google Scholar 

  12. Fišera O, Kareš J, Procházková L, Čuba V, Vlk M, Kozempel J, Fialová K, Palušák M (2020) Device and method for the separating radionuclides from rinsing solutions (in Czech). CZ Patent No. 308654. Industrial Property Office of the Czech Republic. https://isdv.upv.cz/doc/FullFiles/Patents/FullDocuments/308/308654.pdf. Accessed 17 Mar 2022

  13. Kubiak A, Siwińska-Ciesielczyk K, Jesionowski T (2018) Titania-based hybrid materials with ZnO, ZrO2 and MoS2: a review. Materials (Basel) 11:2295. https://doi.org/10.3390/ma11112295

    Article  CAS  PubMed  Google Scholar 

  14. Mahmood T, Saddique MT, Naeem A, Westerhoff P, Mustafa S, Alum A (2011) Comparison of different methods for the point of zero charge determination of NiO. Ind Eng Chem Res 50:10017–10023

    Article  CAS  Google Scholar 

  15. Pospěchová J, Brynych V, Štengl V, Tolasz J, Langecker JH, Bubeníková M, Szatmáry L (2015) Polysaccharide biopolymers modified with titanium or nickel nanoparticles for removal of radionuclides from aqueous solutions. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-015-4414-9

  16. Ren X, Yang S, Tan X, Chen Ch, Wang X (2012) Investigation of radionuclide 60Co(II) binding to TiO2 by batch technique, surface complexation model and DFT calculations. Sci China Chem. https://doi.org/10.1007/s11426-012-4694-7

  17. Kosmulski M (2002) The significance of the difference in the point of zero charge between rutile and anatase. Adv Colloid Interface 99(3):255–264. https://doi.org/10.1016/S0001-8686(02)00080-5

    Article  CAS  Google Scholar 

  18. Kosmulski M (2002) The significance of the points of zero charge of zirconium (Hydr)oxide reported in the literature. J Disper Sci Technol 23(4):529–538. https://doi.org/10.1081/DIS-120014021

    Article  CAS  Google Scholar 

  19. DOWEX 88 MB. Product information. Dow Chemical Company. https://www.lenntech.com/Data-sheets/Dowex%2088%20MB%20(H).pdf. Accessed 25 May 2022

  20. AMBERJET 1000 H. Product data sheet. Rohm and Haas Company. https://www.lenntech.com/Data-sheets/Amberjet-1000-H-L.pdf. Accessed 25 May 2022

  21. Naushad M (2009) Inorganic and composite ion exchange materials and their applications. Ion Exch Lett 2:1–14. http://iel.vscht.cz/articles/1803-4039-02-0001.pdf. Accessed 25 May 2022

Download references

Acknowledgements

This project was supported by the Ministry of Interior of the Czech Republic under contract No. VI20172020106.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ota Fišera.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fišera, O., Kareš, J., Prouzová Procházková, L. et al. Treatment of spent decontamination solutions based on citric acid with composite polyacrylonitrile: transient metal oxidic nanoparticles sorbents. J Radioanal Nucl Chem 332, 1541–1547 (2023). https://doi.org/10.1007/s10967-022-08598-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08598-2

Keywords

Navigation