Skip to main content
Log in

Chromatographic separation of rhenium radioisotopes from irradiated tungsten cyclotron target

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Separation technique of rhenium radioisotopes from a deuteron-irradiated tungsten target of natural isotopic composition has been developed. The irradiated tungsten powder was dissolved in a mixture of H2O2 and NaOH, the solution was passed through a column filled with an extraction chromatographic sorbent TEVA Resin. Rhenium was eluted with 4 M nitric acid. The separation procedure takes approximately 3 h, the radiochemical yield of rhenium is more than 97%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Denis-Bacelar AM, Chittenden SJ, Mccready VR et al (2018) Bone lesion absorbed dose profiles in patients with metastatic prostate cancer treated with molecular radiotherapy. Br J Radiol 91. https://doi.org/10.1259/bjr.20170795

  2. Lam MGEH, De Klerk JMH, Van Rijk PP (2004) 186Re-HEDP for metastatic bone pain in breast cancer patients. Eur J Nucl Med Mol Imaging 31. https://doi.org/10.1007/s00259-004-1539-4

  3. Denis-Bacelar AM, Chittenden SJ, Dearnaley DP et al (2017) Phase I/II trials of 186Re-HEDP in metastatic castration-resistant prostate cancer: post-hoc analysis of the impact of administered activity and dosimetry on survival. Eur J Nucl Med Mol Imaging 44:620–629. https://doi.org/10.1007/s00259-016-3543-x

    Article  CAS  PubMed  Google Scholar 

  4. Kinuya S, Yokoyama K, Izumo M et al (2005) Locoreginal radioimmunotherapy with 186Re-labeled monoclonal antibody in treating small peritoneal carcinomatosis of colon cancer in mice in comparison with 131I-counterpart. Cancer Lett 219:41–48. https://doi.org/10.1016/j.canlet.2004.08.033

    Article  CAS  PubMed  Google Scholar 

  5. Jalilian AR, Beiki D, Hassanzadeh-Rad A et al (2016) Production and clinical applications of radiopharmaceuticals and medical radioisotopes in Iran. Semin Nucl Med 46:340–358. https://doi.org/10.1053/j.semnuclmed.2016.01.006

    Article  PubMed  Google Scholar 

  6. Knut L (2015) Radiosynovectomy in the Therapeutic Management of Arthritis. World J Nucl Med 14:10. https://doi.org/10.4103/1450-1147.150509

    Article  PubMed  PubMed Central  Google Scholar 

  7. North AJ, Karas JA, Ma MT et al (2017) Rhenium and Technetium-oxo Complexes with Thioamide Derivatives of Pyridylhydrazine Bifunctional Chelators Conjugated to the Tumour Targeting Peptides Octreotate and Cyclic-RGDfK. Inorg Chem 56:9725–9741. https://doi.org/10.1021/acs.inorgchem.7b01247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shegani A, Ischyropoulou M, Roupa I et al (2021) Synthesis and evaluation of new mixed “2 + 1” Re, 99mTc and 186Re tricarbonyl dithiocarbamate complexes with different monodentate ligands. Bioorg Med Chem 47:116373. https://doi.org/10.1016/j.bmc.2021.116373

    Article  CAS  PubMed  Google Scholar 

  9. Makris G, Kuchuk M, Gallazzi F et al (2019) Somatostatin receptor targeting with hydrophilic [99mTc/186Re]Tc/Re-tricarbonyl NODAGA and NOTA complexes. Nucl Med Biol 71:39–46. https://doi.org/10.1016/j.nucmedbio.2019.04.004

    Article  CAS  PubMed  Google Scholar 

  10. Makris G, Bandari RP, Kuchuk M et al (2021) Development and Preclinical Evaluation of 99mTc- and 186Re-Labeled NOTA and NODAGA Bioconjugates Demonstrating Matched Pair Targeting of GRPR-Expressing Tumors. Mol Imaging Biol 23:52–61. https://doi.org/10.1007/s11307-020-01537-1

    Article  CAS  PubMed  Google Scholar 

  11. Aranda-Lara L, Morales-Avila E, Luna-Gutiérrez MA et al (2020) Radiolabeled liposomes and lipoproteins as lipidic nanoparticles for imaging and therapy. Chem Phys Lipids 230. https://doi.org/10.1016/j.chemphyslip.2020.104934

  12. Aliev RA, Kormazeva ES, Furkina EB et al (2020) Rhenium Radioisotopes: Production, Properties, and Targeted Delivery Using Nanostructures. Nanotechnologies Russ 15:428–436. https://doi.org/10.1134/S1995078020040023

    Article  CAS  Google Scholar 

  13. Budak MG (2019) Determination of effective resonance energies for the185Re(n,ɣ)186Re and187Re(n,ɣ)188Re reactions by cadmium ratio method. Turkish J Phys 43:147–155. https://doi.org/10.3906/fiz-1808-19

    Article  CAS  Google Scholar 

  14. Katabuchi T, Takebe K, Umezawa S et al (2018) Neutron capture cross section of 185Re leading to ground and isomer states of 186Re in the keV-neutron energy region. EPJ Web Conf 178:03005. https://doi.org/10.1051/epjconf/201817803005

    Article  CAS  Google Scholar 

  15. Tárkányi F, Takács S, Szelecsényi F et al (2006) Excitation functions of proton induced nuclear reactions on natural tungsten up to 34 MeV. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 252:160–174. https://doi.org/10.1016/j.nimb.2006.09.010

    Article  CAS  Google Scholar 

  16. Khandaker MU, Uddin MS, Kim K et al (2008) Excitation functions of proton induced nuclear reactions on natW up to 40 MeV. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 266:1021–1029. https://doi.org/10.1016/j.nimb.2008.02.037

    Article  CAS  Google Scholar 

  17. Kambali I (2021) Cyclotron-based rhenium-186 production using proton beam of up to 50 MeV. J Phys Conf Ser 1825:012085. https://doi.org/10.1088/1742-6596/1825/1/012085

    Article  CAS  Google Scholar 

  18. Khandaker MU, Nagatsu K, Minegishi K et al (2017) Study of deuteron-induced nuclear reactions on natural tungsten for the production of theranostic 186Re via AVF cyclotron up to 38 MeV. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 403:51–68. https://doi.org/10.1016/j.nimb.2017.04.087

    Article  CAS  Google Scholar 

  19. Wang J, Tao X, Kang M et al (2017) Evaluation of excitation function for 186 W(d,2n)186Re reaction. In: EPJ Web of Conferences. https://doi.org/10.1051/epjconf/201714602022

  20. Duchemin C, Guertin A, Haddad F et al (2015) Cross section measurements of deuteron induced nuclear reactions on natural tungsten up to 34 MeV. Appl Radiat Isot 97:52–58. https://doi.org/10.1016/j.apradiso.2014.12.011

    Article  CAS  PubMed  Google Scholar 

  21. Aliev RA, Zagryadskiy VA, Kormazeva ES et al (2021) Measurement of 186 W(4He,p3n)186Re, 186 W(4He,pn)188Re, 186 W(4He, p)189Re reaction cross sections by 4He irradiation of 186 W target. At Energy 130:36–39. https://doi.org/10.1007/s10512-021-00770-3

    Article  CAS  Google Scholar 

  22. Zagryadskii VA, Latushkin ST, Makoveeva KA et al (2020) Measurement of 186Re, 188Re, 189Re yield on 186 W target irradiation by 4He, 3He, 1H, and 2H. At Energy 128:162–165. https://doi.org/10.1007/s10512-020-00668-6

    Article  CAS  Google Scholar 

  23. Moiseeva AN, Aliev RA, Kormazeva ES et al (2021) Cross sections of 3He-particle induced reactions on 186 W. Appl Radiat Isot 170. https://doi.org/10.1016/j.apradiso.2021.109609

  24. Zagryadskiy VA, Kravets YM, Latushkin ST et al (2021) An apparatus for extraction of rhenium radioisotopes from an irradiated tungsten target. Instruments Exp Tech 64:615–618. https://doi.org/10.1134/S0020441221040254

    Article  CAS  Google Scholar 

  25. Moustapha ME, Ehrhardt GJ, Smith CJ et al (2006) Preparation of cyclotron-produced 186Re and comparison with reactor-produced 186Re and generator-produced 188Re for the labeling of bombesin. Nucl Med Biol 33:81–89. https://doi.org/10.1016/j.nucmedbio.2005.09.006

    Article  CAS  PubMed  Google Scholar 

  26. Shigeta N, Matsuoka H, Osa A et al (1996) Production method of no-carrier-added 186Re. J Radioanal Nucl Chem 205:85–92. https://doi.org/10.1007/BF02040553

    Article  CAS  Google Scholar 

  27. Gott MD, Ballard BD, Redman LN et al (2014) Radiochemical study of Re/W adsorption behavior on a strongly basic anion exchange resin. Radiochim Acta 102:325–332. https://doi.org/10.1515/ract-2013-2144

    Article  CAS  Google Scholar 

  28. Fassbender ME, Ballard B, Birnbaum ER et al (2013) Proton irradiation parameters and chemical separation procedure for the bulk production of high-specific-activity 186gRe using WO3 targets. Radiochim Acta 101:339–346. https://doi.org/10.1524/ract.2013.2031

    Article  CAS  Google Scholar 

  29. Zhang X, Li W, Fang K et al (1999) Excitation Functions for natW(p,xn)181–186Re reactions and production of no-carrier-added 186Re via 186 W(p,n)186Re reaction. Radiochim Acta 86:11–16. https://doi.org/10.1524/ract.1999.86.12.11

    Article  CAS  Google Scholar 

  30. Zhang X, Li Q, Li W et al (2001) Production of no-carrier-added 186Re via deuteron induced reactions on isotopically enriched 186 W. Appl Radiat Isot 54:89–92. https://doi.org/10.1016/S0969-8043(00)00268-2

    Article  CAS  PubMed  Google Scholar 

  31. Horwitz EP, Dietz ML, Chiarizia R et al (1995) Separation and preconcentration of actinides by extraction chromatography using a supported liquid anion exchanger: application to the characterization of high-level nuclear waste solutions. Anal Chim Acta 310:63–78. https://doi.org/10.1016/0003-2670(95)00144-O

    Article  CAS  Google Scholar 

  32. Snow M, Ward J (2020) Fundamental distribution coefficient data and separations using eichrom extraction chromatographic resins. J Chromatogr A 1620:460833. https://doi.org/10.1016/J.CHROMA.2019.460833

    Article  CAS  PubMed  Google Scholar 

  33. Zhang Z, Zhou G, Lin J et al (2017) Preconcentration and separation of 99Tc in groundwater by using TEVA resin. J Radioanal Nucl Chem 314:161–166. https://doi.org/10.1007/s10967-017-5425-5

    Article  CAS  Google Scholar 

  34. Uchida S, Tagami K, Saito M (2003) Determination of rhenium traces in river water by Q-ICP-MS and HR-ICP-MS. J Radioanal Nucl Chem 255:329–333. https://doi.org/10.1023/A:1022556804570

    Article  CAS  Google Scholar 

  35. Makishima A, Nakanishi M, Nakamura E (2001) A group separation method for Ruthenium, Palladium, Rhenium, Osmium, Iridium, and Platinum using their bromo complexes and an anion exchange resin. Anal Chem 73:5240–5246. https://doi.org/10.1021/ac010615u

    Article  CAS  PubMed  Google Scholar 

  36. Snow MS, Finck MR, Carney KP, Morrison SS (2017) Extraction chromatographic separations of tantalum and tungsten from hafnium and complex matrix constituents. J Chromatogr A 1484:1–6. https://doi.org/10.1016/J.CHROMA.2017.01.019

    Article  CAS  PubMed  Google Scholar 

  37. Lučaníková M, Kučera J, Šebesta F (2008) New extraction chromatographic material for rhenium separation. J Radioanal Nucl Chem 277:479–485. https://doi.org/10.1007/s10967-007-7153-8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was done with the financial support of the National Research Center “Kurchatov Institute”, order № 2751 from 28.10.2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. B. Furkina.

Ethics declarations

Conflicts of interest

All authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furkina, E.B., Moiseeva, A.N., Aliev, R.A. et al. Chromatographic separation of rhenium radioisotopes from irradiated tungsten cyclotron target. J Radioanal Nucl Chem 331, 4563–4568 (2022). https://doi.org/10.1007/s10967-022-08526-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08526-4

Keywords

Navigation