Skip to main content
Log in

Efficient extraction of UO22+ from seawater by polyethylenimine functionalized activated carbon (PEI-AC): adsorption performance and mechanism

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this work, an inexpensive PEI-AC sorbent was synthesized by facile hydrothermal grafting method and used to uranium capture from seawater. Batch experimental demonstrated that the optimal operation pH of PEI-AC was 6.0. The adsorption process is conformed to pseudo-second-order kinetic model and Langmuir monolayer adsorption isotherm, and the maximum equilibrium adsorption capacity reached 50.27 mg/g. The PEI-AC samples exhibited better selective and efficiency in various competing ions and uranium-spiked seawater. Furthermore, the removal efficiency remained 88.52% after five sequence adsorption/desorption experiments. By the analysis of XPS, the interaction of UO22+ with N/O-containing ligands were the primary immobilization mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cui WR, Li FF, Xu RH, Zhang CR, Chen XR, Yan RH, Liang RP, Qiu JD (2020) Regenerable covalent organic frameworks for photo-enhanced uranium adsorption from seawater. Angew Chem Int Edit 59:17684–17690. https://doi.org/10.1002/anie.202007895

    Article  CAS  Google Scholar 

  2. Tan L, Liu Q, Jing X, Liu J, Song D, Hu S, Liu L, Wang J (2015) Removal of uranium(VI) ions from aqueous solution by magnetic cobalt ferrite/multiwalled carbon nanotubes composites. Chem Eng J 273:307–315. https://doi.org/10.1016/j.cej.2015.01.110

    Article  CAS  Google Scholar 

  3. Wang XX, Chen L, Wang L, Fan QH, Pan DQ, Li JX, Chi FT, Xie Y, Yu SJ, Xiao CL, Luo F, Wang J, Wang XL, Chen CL, Wu WS, Shi WQ, Wang S, Wang XK (2019) Synthesis of novel nanomaterials and their application in efficient removal of radionuclides. Sci China Chem 62:933–967. https://doi.org/10.1007/s11426-019-9492-4

    Article  CAS  Google Scholar 

  4. Yuan YH, Liu TT, Xiao JX, Yu QH, Feng LJ, Niu BY, Feng SW, Zhang JC, Wang N (2020) DNA nano-pocket for ultra-selective uranyl extraction from seawater. Nat Commun. https://doi.org/10.1038/s41467-020-19419-z

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhao SL, Yuan YH, Yu QH, Niu BY, Liao JH, Guo ZH, Wang N (2019) A dual-surface amidoximated halloysite nanotube for high-efficiency economical uranium extraction from seawater. Angew Chem Int Edit 58:14979–14985. https://doi.org/10.1002/anie.201908762

    Article  CAS  Google Scholar 

  6. Yuan YH, Yu QH, Yang S, Wen J, Guo ZH, Wang XL, Wang N (2019) Ultrafast recovery of uranium from seawater by bacillus velezensis strain UUS-1 with innate anti-biofouling activity. Adv Sci. https://doi.org/10.1002/advs.201900961

    Article  Google Scholar 

  7. Chen F, Lv M, Ye Y, Miao S, Tang X, Liu Y, Liang B, Qin Z, Chen Y, He Z, Wang Y (2022) Insights on uranium removal by ion exchange columns: The deactivation mechanisms, and an overlooked biological pathway. Chem Eng J 434:134708. https://doi.org/10.1016/j.cej.2022.134708

    Article  CAS  Google Scholar 

  8. Zarrougui R, Mdimagh R, Raouafi N (2018) Highly efficient extraction and selective separation of uranium (VI) from transition metals using new class of undiluted ionic liquids based on H-phosphonate anions. J Hazard Mater 342:464–476. https://doi.org/10.1016/j.jhazmat.2017.08.057

    Article  CAS  PubMed  Google Scholar 

  9. Shi S, Qian Y, Mei P, Yuan Y, Jia N, Dong M, Fan J, Guo Z, Wang N (2020) Robust flexible poly(amidoxime) porous network membranes for highly efficient uranium extraction from seawater. Nano Energy 71:104629. https://doi.org/10.1016/j.nanoen.2020.104629

    Article  CAS  Google Scholar 

  10. Liang P-l, Yuan L-y, Deng H, Wang X-c, Wang L, Li Z-j, Luo S-z, Shi W-q (2020) Photocatalytic reduction of uranium(VI) by magnetic ZnFe2O4 under visible light. Appl Catal B-Environ 267:118688. https://doi.org/10.1016/j.apcatb.2020.118688

    Article  CAS  Google Scholar 

  11. Meng Q, Yang X, Wu L, Chen T, Li Y, He R, Zhu W, Zhu L, Duan T (2022) Metal-free 2D/2D C3N5/GO nanosheets with customized energy-level structure for radioactive nuclear wastewater treatment. J Hazard Mater 422:126912. https://doi.org/10.1016/j.jhazmat.2021.126912

    Article  CAS  PubMed  Google Scholar 

  12. Wu L, Yang X, Chen T, Li Y, Meng Q, Zhu L, Zhu W, He R, Duan T (2022) Three-dimensional C3N5/RGO aerogels with enhanced visible-light response and electron-hole separation efficiency for photocatalytic uranium reduction. Chem Eng J. https://doi.org/10.1016/j.cej.2021.131773

    Article  PubMed  PubMed Central  Google Scholar 

  13. He P, Zhang L, Wu L, Yang X, Chen T, Li Y, Yang X, Zhu L, Meng Q, Duan T (2022) Synergistic Effect of the Sulfur Vacancy and Schottky Heterojunction on Photocatalytic Uranium Immobilization: The Thermodynamics and Kinetics. Inorg Chem 61:2242–2250. https://doi.org/10.1021/acs.inorgchem.1c03552

    Article  CAS  PubMed  Google Scholar 

  14. Ye Y, Fan B, Qin Z, Tang X, Feng Y, Lv M, Miao S, Li H, Chen Y, Chen F, Wang Y (2022) Electrochemical removal and recovery of uranium: Effects of operation conditions, mechanisms, and implications. J Hazard Mater 432:128723. https://doi.org/10.1016/j.jhazmat.2022.128723

    Article  CAS  PubMed  Google Scholar 

  15. Hamza MF, Roux J-C, Guibal E (2018) Uranium and europium sorption on amidoxime-functionalized magnetic chitosan micro-particles. Chem Eng J 344:124–137. https://doi.org/10.1016/j.cej.2018.03.029

    Article  CAS  Google Scholar 

  16. Abney CW, Mayes RT, Saito T, Dai S (2017) Materials for the Recovery of Uranium from Seawater. Chem Rev 117:13935–14013. https://doi.org/10.1021/acs.chemrev.7b00355

    Article  CAS  PubMed  Google Scholar 

  17. Tsarev S, Waite TD, Collins RN (2016) Uranium Reduction by Fe(II) in the Presence of Montmorillonite and Nontronite. Environ Sci Technol 50:8223–8230. https://doi.org/10.1021/acs.est.6b02000

    Article  CAS  PubMed  Google Scholar 

  18. Tran EL, Teutsch N, Klein-BenDavid O, Weisbrod N (2018) Uranium and Cesium sorption to bentonite colloids under carbonate-rich environments: Implications for radionuclide transport. Sci Total Environ 643:260–269. https://doi.org/10.1016/j.scitotenv.2018.06.162

    Article  CAS  PubMed  Google Scholar 

  19. Crane RA, Pullin H, Scott TB (2015) The influence of calcium, sodium and bicarbonate on the uptake of uranium onto nanoscale zero-valent iron particles. Chem Eng J 277:252–259. https://doi.org/10.1016/j.cej.2015.03.085

    Article  CAS  Google Scholar 

  20. Kumar V, Singh V, Kim K-H, Kwon EE, Younis SA (2021) Metal-organic frameworks for photocatalytic detoxification of chromium and uranium in water. Coordin Chem Rev 447:214148. https://doi.org/10.1016/j.ccr.2021.214148

    Article  CAS  Google Scholar 

  21. Guo H, Mei P, Xiao J, Huang X, Ishag A, Sun Y (2021) Carbon materials for extraction of uranium from seawater. Chemosphere. https://doi.org/10.1016/j.chemosphere.2021.130411

    Article  PubMed  Google Scholar 

  22. Dai L, Li L, Zhu W, Ma H, Huang H, Lu Q, Yang M, Ran Y (2020) Post-engineering of biochar via thermal air treatment for highly efficient promotion of uranium(VI) adsorption. Bioresource Technol 298:122576. https://doi.org/10.1016/j.biortech.2019.122576

    Article  CAS  Google Scholar 

  23. Zhu M, Li F, Chen W, Yin X, Yi Z, Zhang S (2021) Adsorption of U(VI) from aqueous solution by using KMnO4-modified hazelnut shell activated carbon: characterisation and artificial neural network modelling. Environ Sci Pollut R 28:47354–47366. https://doi.org/10.1007/s11356-021-14034-x

    Article  CAS  Google Scholar 

  24. Chu G, Zhao J, Huang Y, Zhou D, Liu Y, Wu M, Peng H, Zhao Q, Pan B, Steinberg CEW (2018) Phosphoric acid pretreatment enhances the specific surface areas of biochars by generation of micropores. Environ Pollut 240:1–9. https://doi.org/10.1016/j.envpol.2018.04.003

    Article  CAS  PubMed  Google Scholar 

  25. Jin J, Li S, Peng X, Liu W, Zhang C, Yang Y, Han L, Du Z, Sun K, Wang X (2018) HNO3 modified biochars for uranium (VI) removal from aqueous solution. Bioresource Technol 256:247–253. https://doi.org/10.1016/j.biortech.2018.02.022

    Article  CAS  Google Scholar 

  26. Yu S, Wu X, Ye J, Li M, Zhang Q, Zhang X, Lv C, Xie W, Shi K, Liu Y (2022) Dual effect of acetic acid efficiently enhances sludge-based biochar to recover uranium from aqueous solution. Front Chem. https://doi.org/10.3389/fchem.2022.835959

    Article  PubMed  PubMed Central  Google Scholar 

  27. Alahabadi A, Singh P, Raizada P, Anastopoulos I, Sivamani S, Dotto GL, Landarani M, Ivanets A, Kyzas GZ, Hosseini-Bandegharaei A (2020) Activated carbon from wood wastes for the removal of uranium and thorium ions through modification with mineral acid. Colloids Surf a-Physicochem Eng Aspects. https://doi.org/10.1016/j.colsurfa.2020.125516

    Article  Google Scholar 

  28. Nezhad MM, Semnani A, Tavakkoli N, Shirani M (2021) Selective and highly efficient removal of uranium from radioactive effluents by activated carbon functionalized with 2-aminobenzoic acid as a new sorbent. J Environ Manage 299:113587–113587. https://doi.org/10.1016/j.jenvman.2021.113587

    Article  CAS  PubMed  Google Scholar 

  29. Liatsou I, Pashalidis I, Dosche C (2020) Cu(II) adsorption on 2-thiouracil-modified Luffa cylindrica biochar fibres from artificial and real samples, and competition reactions with U(VI). J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2019.120950

    Article  PubMed  Google Scholar 

  30. Abu-Dalo MA, Nevostrueva S, Hernandez M (2020) Removal of radionuclides from acidic solution by activated carbon impregnated with methyl- and carboxy-benzotriazoles. Sci Rep-UK. https://doi.org/10.1038/s41598-020-68645-4

    Article  Google Scholar 

  31. He N, Li H, Cheng C, Dong H, Lu X, Wen J, Wang X (2020) Enhanced marine applicability of adsorbent for uranium via synergy of hyperbranched poly(amido amine) and amidoxime groups. Chem Eng J 395:125162. https://doi.org/10.1016/j.cej.2020.125162

    Article  CAS  Google Scholar 

  32. Li H, Li Y, Zhou Y, Li B, Liu D, Liao H (2019) Efficient removal of uranium using a melamine/trimesic acid-modified hydrothermal carbon-based supramolecular organic framework. J Colloid Interf Sci 544:14–24. https://doi.org/10.1016/j.jcis.2019.02.079

    Article  CAS  Google Scholar 

  33. Zhou Y, Li Y, Liu D, Liu D, Xu L, Liu C (2021) Adsorption optimization of uranium(VI) onto polydopamine and sodium titanate co-functionalized MWCNTs using response surface methodology and a modeling approach. Colloid Surface A 627:127145. https://doi.org/10.1016/j.colsurfa.2021.127145

    Article  CAS  Google Scholar 

  34. Bayramoglu G, Arica MY (2017) Polyethylenimine and tris(2-aminoethyl)amine modified p(GA–EGMA) microbeads for sorption of uranium ions: equilibrium, kinetic and thermodynamic studies. J Radioanal Nucl Chem 312:293–303. https://doi.org/10.1007/s10967-017-5216-z

    Article  CAS  Google Scholar 

  35. Sun G, Zhou L, Tang X, Le Z, Liu Z, Huang G (2020) In situ formed magnetic chitosan nanoparticles functionalized with polyethylenimine for effective U(VI) sorption. J Radioanal Nucl Chem 325:595–604. https://doi.org/10.1007/s10967-020-07230-5

    Article  CAS  Google Scholar 

  36. Pang H, Huang S, Wu Y, Yang D, Wang X, Yu S, Chen Z, Alsaedi A, Hayat T, Wang X (2018) Efficient elimination of U(vi) by polyethyleneimine-decorated fly ash. Inorg Chem Front 5:2399–2407. https://doi.org/10.1039/C8QI00253C

    Article  CAS  Google Scholar 

  37. Sun Y, Zhang H, Yuan N, Ge Y, Dai Y, Yang Z, Lu L (2021) Phosphorylated biomass-derived porous carbon material for efficient removal of U(VI) in wastewater. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2021.125282

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhang Q, Wang Y, Wang Z, Zhang Z, Wang X, Yang Z (2021) Active biochar support nano zero-valent iron for efficient removal of U(VI) from sewage water. J Alloy Compd 852:156993. https://doi.org/10.1016/j.jallcom.2020.156993

    Article  CAS  Google Scholar 

  39. Su S, Liu Q, Liu J, Zhang H, Li R, Jing X, Wang J (2018) Polyethyleneimine-functionalized Luffa cylindrica for efficient uranium extraction. J Colloid Interf Sci 530:538–546. https://doi.org/10.1016/j.jcis.2018.03.102

    Article  CAS  Google Scholar 

  40. Kong Y, Jin L, Qiu J (2013) Synthesis, characterization, and CO2 capture study of micro-nano carbonaceous composites. Sci Total Environ 463–464:192–198. https://doi.org/10.1016/j.scitotenv.2013.05.050

    Article  CAS  PubMed  Google Scholar 

  41. Tan X, Fan Q, Wang X, Grambow B (2009) Eu(III) Sorption to TiO2 (Anatase and Rutile): Batch, XPS, and EXAFS Studies. Environ Sci Technol 43:3115–3121. https://doi.org/10.1021/es803431c

    Article  CAS  PubMed  Google Scholar 

  42. Yan T, Luo X, Zou Z, Lin X, He Y (2017) Adsorption of Uranium(VI) from a Simulated Saline Solution by Alkali-Activated Leather Waste. Ind Eng Chem Res 56:3251–3258. https://doi.org/10.1021/acs.iecr.6b04425

    Article  CAS  Google Scholar 

  43. Venkata Sravani V, Sengupta S, Sreenivasulu B, Gopakumar G, Tripathi S, Chandra M, Brahmmananda Rao CVS, Suresh A, Nagarajan S (2022) Highly efficient functionalized MOF-LIC-1 for extraction of U(vi) and Th(iv) from aqueous solution: experimental and theoretical studies. Dalton T 51:3557–3571. https://doi.org/10.1039/D1DT03317D

    Article  CAS  Google Scholar 

  44. Shao D, Jiang Z, Wang X, Li J, Meng Y (2009) Plasma induced grafting carboxymethyl cellulose on multiwalled carbon nanotubes for the removal of UO22+ from aqueous solution. J Phys Chem B 113:860–864. https://doi.org/10.1021/jp8091094

    Article  CAS  PubMed  Google Scholar 

  45. Ma L, Huang Y, Zhao K, Deng H, Tian Q, Yan M (2021) Removal of uranium from acidic aqueous solution by natural fluorapatite. J Environ Chem Eng 9:106600. https://doi.org/10.1016/j.jece.2021.106600

    Article  CAS  Google Scholar 

  46. Al-Harahsheh M, AlJarrah M, Alrebaki M, Mayyas M (2020) Nanoionic exchanger with unprecedented loading capacity of uranium. Sep Purif Technol 238:116423. https://doi.org/10.1016/j.seppur.2019.116423

    Article  CAS  Google Scholar 

  47. Xue J-H, Zhang H, Ding DX, Hu N, Wang Y-D, Wang Y-S (2019) Linear β-cyclodextrin polymer functionalized multiwalled carbon nanotubes as nanoadsorbent for highly effective removal of U(VI) from aqueous solution based on inner-sphere surface complexation. Ind Eng Chem Res 58:4074–4083. https://doi.org/10.1021/acs.iecr.8b05453

    Article  CAS  Google Scholar 

  48. Chen H, Chen Z, Zhao G, Zhang Z, Xu C, Liu Y, Chen J, Zhuang L, Haya T, Wang X (2018) Enhanced adsorption of U(VI) and 241Am(III) from wastewater using Ca/Al layered double hydroxide@carbon nanotube composites. J Hazard Mater 347:67–77. https://doi.org/10.1016/j.jhazmat.2017.12.062

    Article  CAS  PubMed  Google Scholar 

  49. Wang X, Liu Q, Liu J, Chen R, Zhang H, Li R, Li Z, Wang J (2017) 3D self-assembly polyethyleneimine modified graphene oxide hydrogel for the extraction of uranium from aqueous solution. Appl Surf Sci 426:1063–1074. https://doi.org/10.1016/j.apsusc.2017.07.203

    Article  CAS  Google Scholar 

  50. Feng S, Feng L, Wang M, Yuan Y, Yu Q, Feng T, Cao M, Wang N, Peng Q (2022) Highly efficient extraction of uranium from seawater by natural marine crab carapace. Chem Eng J 430:133038. https://doi.org/10.1016/j.cej.2021.133038

    Article  CAS  Google Scholar 

  51. Amphlett JTM, Choi S, Parry SA, Moon EM, Sharrad CA, Ogden MD (2020) Insights on uranium uptake mechanisms by ion exchange resins with chelating functionalities: Chelation vs. anion exchange. Chem Eng J 392:123712. https://doi.org/10.1016/j.cej.2019.123712

    Article  CAS  Google Scholar 

  52. Tangtubtim S, Saikrasun S (2019) Adsorption behavior of polyethyleneimine-carbamate linked pineapple leaf fiber for Cr(VI) removal. Appl Surf Sci 467–468:596–607. https://doi.org/10.1016/j.apsusc.2018.10.204

    Article  CAS  Google Scholar 

  53. Wang S, Xiao K, Mo Y, Yang B, Vincent T, Faur C, Guibal E (2020) Selenium(VI) and copper(II) adsorption using polyethyleneimine-based resins: Effect of glutaraldehyde crosslinking and storage condition. J Hazard Mater 386:121637. https://doi.org/10.1016/j.jhazmat.2019.121637

    Article  CAS  PubMed  Google Scholar 

  54. Xie X, Gao H, Luo X, Su T, Zhang Y, Qin Z (2019) Polyethyleneimine modified activated carbon for adsorption of Cd(II) in aqueous solution. J Environ Chem Eng 7:103183. https://doi.org/10.1016/j.jece.2019.103183

    Article  CAS  Google Scholar 

  55. Manos MJ, Kanatzidis MG (2012) Layered Metal Sulfides Capture Uranium from Seawater. J Am Chem Soc 134:16441–16446. https://doi.org/10.1021/ja308028n

    Article  CAS  PubMed  Google Scholar 

  56. Ahmad M, Ren J, Zhang Y, Kou H, M-u-d N, Zhang Q, Zhang B (2022) Simple and facile preparation of tunable chitosan tubular nanocomposite microspheres for fast uranium(VI) removal from seawater. Chem Eng J 427:130934. https://doi.org/10.1016/j.cej.2021.130934

    Article  CAS  Google Scholar 

  57. Marwa MA (2021)Adsorption phenomena: definition, mechanisms, and adsorption types: short review. Green Appl Chem 13:43–51.ISSN: 2605–6895

Download references

Acknowledgements

This work was funded by the Ministry of Science and Technology of the People’s Republic of China (Grant No. 2016YFC1402504), and we highly appreciated the assist of characterization by Key Lab of material composite new technology of Wuhan University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Li.

Ethics declarations

Conflict of interest

All the authors of this article declared that there has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 33182 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Li, Y., Liu, S. et al. Efficient extraction of UO22+ from seawater by polyethylenimine functionalized activated carbon (PEI-AC): adsorption performance and mechanism. J Radioanal Nucl Chem 331, 4635–4648 (2022). https://doi.org/10.1007/s10967-022-08523-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08523-7

Keywords

Navigation