Skip to main content
Log in

Preparation and performance of amidoximated silver-silica core–shell nanoparticles for uranium extraction from seawater

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Biofouling caused by marine microorganisms could remarkably decrease the adsorption capacity of adsorbents towards uranium extraction from seawater since the materials usually have to be immersed in marine environment for several months owing to the extremely low content of uranium. In order to avoid the interference of microbial adhesion, this work designed and fabricated a new antibacterial material named amidoximated silver-silica core–shell nanoparticle (Ag@SiO2-AO) as a potential adsorbent for uranium extraction from seawater. Experimental results demonstrated that in uranium-spiked seawater, the maximal uranium uptake of Ag@SiO2-AO reached 47.42 mg/g, and the silver released by the material was effective to inhibit Escherichia coli and Staphylococcus aureus by interrupting cell respiration, resulting in lipid peroxidation and ultimately the death of cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. NEW/IAEA (2021) Uranium 2020: resources, production and demand. Éditions OCDE, Paris. https://doi.org/10.1787/d82388ab-en

    Book  Google Scholar 

  2. Li JQ et al (2017) Direct extraction of U(VI) from alkaline solution and seawater via anion exchange by metal-organic framework. Chem Eng J 316:154–159

    Article  CAS  Google Scholar 

  3. Zhao S et al (2019) A dual-surface amidoximated halloysite nanotube for high-efficiency economical uranium extraction from seawater. Angew Chem Int Ed Engl 58(42):14979–14985

    Article  CAS  PubMed  Google Scholar 

  4. Kumari N et al (2011) Extraction studies of uranium into a third-phase of thorium nitrate employing tributyl phosphate and N,N-dihexyl octanamide as extractants in different diluents. J Radioanal Nucl Chem 289(3):835–843

    Article  CAS  Google Scholar 

  5. Yuan Y et al (2019) Ultrafast recovery of uranium from seawater by Bacillus velezensis strain UUS-1 with innate anti-biofouling activity. Adv Sci (Weinh) 6(18):1900961

    Article  CAS  Google Scholar 

  6. Yuan F et al (2017) Synthesis of phytic acid-decorated titanate nanotubes for high efficient and high selective removal of U(VI). Chem Eng J 322:353–365

    Article  CAS  Google Scholar 

  7. Guo X et al (2015) Sequestering uranium from UO2(CO3)3(4-) in seawater with amine ligands: density functional theory calculations. Phys Chem Chem Phys 17(22):14662–14673

    Article  CAS  PubMed  Google Scholar 

  8. Wang CZ et al (2014) Theoretical insights on the interaction of uranium with amidoxime and carboxyl groups. Inorg Chem 53(18):9466–9476

    Article  CAS  PubMed  Google Scholar 

  9. Parker BF et al (2018) An overview and recent progress in the chemistry of uranium extraction from seawater. Dalton Trans 47(3):639–644

    Article  CAS  PubMed  Google Scholar 

  10. Abney CW et al (2017) Materials for the recovery of uranium from seawater. Chem Rev 117(23):13935–14013

    Article  CAS  PubMed  Google Scholar 

  11. Uzun D et al (2021) A CFD study: Influence of biofouling on a full-scale submarine. Appl Ocean Res 109(1):102561

    Article  Google Scholar 

  12. Yebra DM et al (2004) Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog Org Coat 50(2):75–104

    Article  CAS  Google Scholar 

  13. Park J et al (2016) Effect of biofouling on the performance of amidoxime-based polymeric uranium adsorbents. Ind Eng Chem Res 55(15):4328–4338

    Article  CAS  Google Scholar 

  14. Gill GA et al (2016) The uranium from seawater program at the Pacific Northwest National Laboratory: overview of marine testing, adsorbent characterization, adsorbent durability, adsorbent toxicity, and deployment studies. Ind Eng Chem Res 55(15):4264–4277

    Article  CAS  Google Scholar 

  15. Guo X et al (2018) Superhydrophilic phosphate and amide functionalized magnetic adsorbent: a new combination of anti-biofouling and uranium extraction from seawater. Environ Sci Nano 5(10):2346–2356

    Article  CAS  Google Scholar 

  16. Zhang H et al (2018) Guanidine and amidoxime cofunctionalized polypropylene nonwoven fabric for potential uranium seawater extraction with antifouling property. Ind Eng Chem Res 57(5):1662–1670

    Article  CAS  Google Scholar 

  17. Yu Q et al (2019) A universally applicable strategy for construction of anti-biofouling adsorbents for enhanced uranium recovery from seawater. Adv Sci (Weinh) 6(13):1900002

    Article  Google Scholar 

  18. Wen J et al (2018) Nano-TiO2 imparts amidoximated wool fibers with good antibacterial activity and adsorption capacity for uranium(VI) recovery. Ind Eng Chem Res 57(6):1826–1833

    Article  CAS  Google Scholar 

  19. Oves M et al (2018) Antimicrobial and anticancer activities of silver nanoparticles synthesized from the root hair extract of Phoenix dactylifera. Mater Sci Eng C Mater Biol Appl 89:429–443

    Article  CAS  PubMed  Google Scholar 

  20. Yin IX et al (2020) The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int J Nanomed 15:2555–2562

    Article  CAS  Google Scholar 

  21. Huang F et al (2017) Silver-decorated polymeric micelles combined with Curcumin for enhanced antibacterial activity. ACS Appl Mater Interfaces 9(20):16880–16889

    Article  CAS  PubMed  Google Scholar 

  22. Fahmy HM et al (2019) Coated silver nanoparticles: synthesis, cytotoxicity, and optical properties. RSC Adv 9(35):20118–20136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ballottin D et al (2017) Antimicrobial textiles: Biogenic silver nanoparticles against Candida and Xanthomonas. Mater Sci Eng C Mater Biol Appl 75:582–589

    Article  CAS  PubMed  Google Scholar 

  24. Lv Y et al (2009) Silver nanoparticle-decorated porous ceramic composite for water treatment. J Membr Sci 331(1–2):50–56

    Article  CAS  Google Scholar 

  25. Zhang Q et al (2021) Catalytical and antibacterial sugarcane filter decorated with sliver nanoparticle for water treatment. Ind Crops Prod 164

  26. Somasundaran P et al (2016) A novel processing scheme for core—shell nano composites using controlled polymer adsorption. Mater Res Innov 2(6):325-327

    Article  Google Scholar 

  27. Kang H et al (2019) Stabilization of silver and gold nanoparticles: preservation and improvement of plasmonic functionalities. Chem Rev 119(1):664–699

    Article  CAS  PubMed  Google Scholar 

  28. Venkatesham M et al (2012) A novel green one-step synthesis of silver nanoparticles using chitosan: catalytic activity and antimicrobial studies. Appl Nanosci 4(1):113–119

    Article  Google Scholar 

  29. Abdul Kareem T et al (2011) Synthesis and thermal study of octahedral silver nano-plates in polyvinyl alcohol (PVA). Arab J Chem 4(3):325–331

    Article  CAS  Google Scholar 

  30. Gawande MB et al (2015) Core-shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chem Soc Rev 44(21):7540–7590

    Article  CAS  PubMed  Google Scholar 

  31. Mondal K et al (2016) Recent advances in the synthesis and application of photocatalytic metal–metal oxide core–shell nanoparticles for environmental remediation and their recycling process. RSC Adv 6(87):83589–83612

    Article  CAS  Google Scholar 

  32. Chen Q et al (2018) Nanostructures confined self-assembled in biomimetic nanochannels for enhancing the sensitivity of biological molecules response. J Mater Sci: Mater Electron 29(23):19757–19767

    CAS  Google Scholar 

  33. Kim C et al (2018) Surface-optimized core–shell nanocomposites (Fe3O4@MnxFeyO4) for ultra-high uranium sorption and low-field separation in water. Environ Sci Nano 5(10):2252–2256

    Article  CAS  Google Scholar 

  34. Tan L et al (2015) Preparation of magnetic core-shell iron oxide@silica@nickel-ethylene glycol microspheres for highly efficient sorption of uranium(VI). Dalton Trans 44(15):6909–6917

    Article  CAS  PubMed  Google Scholar 

  35. Carlson C et al (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112(43):13608–13619

    Article  CAS  PubMed  Google Scholar 

  36. Zhang XS et al (2011) Monodisperse Ag@SiO2 core-shell nanoparticles as active inhibitors for marine anticorrosion applications. J Nanosci Nanotechnol 11(4):3481–3487

    Article  CAS  PubMed  Google Scholar 

  37. Lu X et al (2011) A preliminary study of the microbial resources and their biological activities of the East China Sea. Evid Based Complement Alternat Med 2011:806485

    Article  PubMed  PubMed Central  Google Scholar 

  38. Shan D et al (2015) Distribution and diversity of bacterioplankton communities in subtropical seawater around Xiamen Island, China. Microbiol Res 175:16–23

    Article  CAS  PubMed  Google Scholar 

  39. Yu SX et al (2018) Distribution of bacterial communities along the spatial and environmental gradients from Bohai Sea to northern Yellow Sea. PeerJ 6:e4272

    Article  PubMed  PubMed Central  Google Scholar 

  40. Feng BW et al (2009) Bacterial diversity of water and sediment in the Changjiang estuary and coastal area of the East China Sea. FEMS Microbiol Ecol 70(2):80–92

    Article  PubMed  Google Scholar 

  41. Zhang Y et al (2018) Community differentiation of bacterioplankton in the epipelagic layer in the South China Sea. Ecol Evol 8(10):4932–4948

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sun FL et al (2015) Spatial and vertical distribution of bacterial community in the northern South China Sea. Ecotoxicology 24(7–8):1478–1485

    Article  CAS  PubMed  Google Scholar 

  43. Zhang Y et al (2007) Dynamics of aerobic anoxygenic phototrophic bacteria in the East China Sea. FEMS Microbiol Ecol 61(3):459–469

    Article  CAS  PubMed  Google Scholar 

  44. He Y et al (2017) Distinct seasonal patterns of bacterioplankton abundance and dominance of phyla alpha-proteobacteria and cyanobacteria in qinhuangdao coastal waters off the Bohai Sea. Front Microbiol 8:1579

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zhang L et al (2015) Extended X-ray absorption fine structure and density functional theory studies on the complexation mechanism of amidoximate ligand to uranyl carbonate. Ind Eng Chem Res 55(15):4224–4230

    Article  Google Scholar 

  46. Lv Z et al (2019) Enhanced removal of uranium(VI) from aqueous solution by a novel Mg-MOF-74-derived porous MgO/carbon adsorbent. J Colloid Interface Sci 537:A1–A10

    Article  CAS  PubMed  Google Scholar 

  47. Maher K et al (2013) Environmental speciation of actinides. Inorg Chem 52(7):3510–3532

    Article  CAS  PubMed  Google Scholar 

  48. Marques Fernandes M et al (2012) U(VI) sorption on montmorillonite in the absence and presence of carbonate: a macroscopic and microscopic study. Geochim Cosmochim Acta 93:262–277

    Article  CAS  Google Scholar 

  49. Zhang A et al (2003) The adsorption mechanism of uranium(VI) from seawater on a macroporous fibrous polymeric adsorbent containing amidoxime chelating functional group. React Funct Polym 57(1):67–76

    Article  CAS  Google Scholar 

  50. Krestou A et al (2004) Uranium (VI) Speciation Diagrams in the UO22+/CO32-/H2O System at 25°C. Eur J Miner Process Environ Prot 4:113–129

    Google Scholar 

  51. Zhao D et al (2020) An amidoxime-functionalized polypropylene fiber: Competitive removal of Cu(II), Pb(II) and Zn(II) from wastewater and subsequent sequestration in cement mortar. J Clean Prod 274:123049

    Article  CAS  Google Scholar 

  52. Wang C-Z et al (2017) Complexation of vanadium with amidoxime and carboxyl groups: uncovering the competitive role of vanadium in uranium extraction from seawater. Radiochim Acta 105(7):541–553

    Article  CAS  Google Scholar 

  53. Ochsenkhn-Petropulu M et al (1993) Separation of uranium from uraniferous coaly clays using a selective ion-exchange two-step elution system. Fresenius J Anal Chem 345(1):43–47

    Article  Google Scholar 

  54. Guettaf H et al (2009) Concentration-purification of uranium from an acid leaching solution. Phys Procedia 2(3):765–771

    Article  CAS  Google Scholar 

  55. Injarean U et al (2014) Batch simulation of multistage countercurrent extraction of uranium in yellow cake from monazite processing with 5% TBP/kerosene. Energy Procedia 56:129–134

    Article  CAS  Google Scholar 

  56. AshaRani PV et al (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2):279–290

    Article  CAS  PubMed  Google Scholar 

  57. Holt KB et al (2005) Interaction of silver(I) ions with the respiratory chain of Escherichia coli: an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+. Biochemistry 44(39):13214–13223

    Article  CAS  PubMed  Google Scholar 

  58. Matés JM et al (2000) Role of reactive oxygen species in apoptosis: implications for cancer therapy. Int J Biochem Cell Biol 32(2):157–170

    Article  PubMed  Google Scholar 

  59. Xu H et al (2012) Role of reactive oxygen species in the antibacterial mechanism of silver nanoparticles on Escherichia coli O157:H7. Biometals 25(1):45–53

    Article  CAS  PubMed  Google Scholar 

  60. Matsumura Y et al (2003) Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol 69(7):4278–4281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Singh AV et al (2014) Carbon nanotube-induced loss of multicellular chirality on micropatterned substrate is mediated by oxidative stress. ACS Nano 8(3):2196–2205

    Article  CAS  PubMed  Google Scholar 

  62. Porter NA (2013) A perspective on free radical autoxidation: the physical organic chemistry of polyunsaturated fatty acid and sterol peroxidation. J Org Chem 78(8):3511–3524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rival T et al (2013) Alteration of plasma phospholipid fatty acid profile in patients with septic shock. Biochimie 95(11):2177–2181

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (21876073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suwen Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5461 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mo, H., Sun, R., Qu, C. et al. Preparation and performance of amidoximated silver-silica core–shell nanoparticles for uranium extraction from seawater. J Radioanal Nucl Chem 331, 4541–4552 (2022). https://doi.org/10.1007/s10967-022-08514-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08514-8

Keywords

Navigation