Skip to main content
Log in

Investigating the 36Cl memory effect in pyrolysis of solid samples from nuclear decommissioning activities

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

During the optimization of 36Cl determination in solid wastes from nuclear decommissioning, a residual 36Cl signal was observed in procedural blanks measured after processing active samples. To uncover the possible causes, we investigated the interaction of chlorine with the components of a Pyrolyser-6 Trio™, as well as the chemicals used during the procedure. Different treatments for identifying the source of chlorine carryover were thoroughly investigated, demonstrating that the 36Cl memory effect arises from the interaction with pyrolyser components and that it occurs almost every time when the analysis procedure is performed. Therefore, results obtained using this analysis procedure need to be corrected for this memory effect by measuring procedural blank samples before and after measuring 36Cl-containing samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ojovan MI (2011) Radioactive waste characterization and selection of processing technologies. Handbook of advanced radioactive waste conditioning technologies. Woodhead Publishing Limited, Sawston, pp 1–16

    Chapter  Google Scholar 

  2. The International Atomic Energy Agency (IAEA) (2004) Application of the concepts of exclusion, exemption and clearance (IAEA RS-G-1.7). Vienna, Austria

  3. Taddei MHT, Vicente R, Marumo JT, Sakata SK, Terremoto LAA (2013) Determination of long-lived radionuclides in radioactive wastes from the IEA-R1 nuclear research reactor. J Radioanal Nucl Chem 295:951–957. https://doi.org/10.1007/s10967-012-1865-0

    Article  CAS  Google Scholar 

  4. Croudace I, Warwick P (2013) Application of thermal desorption techniques to the characterisation of nuclear decommissioning wastes. In: 2nd NKS‐B workshop on radioanalytical chemistry. Roskilde, Denmark, pp 1–17

  5. Hou X, Roos P (2008) Critical comparison of radiometric and mass spectrometric methods for the determination of radionuclides in environmental, biological and nuclear waste samples. Anal Chim Acta 608:105–139. https://doi.org/10.1016/j.aca.2007.12.012

    Article  PubMed  CAS  Google Scholar 

  6. Hou X, Olsson M, Togneri L, Englund S, Vaaramaa K, Askeljung C, Gottfridsson O, Hirvonen H, Öhlin H, Forsström M, Anders F, Lampén M, Hatakka A (2016) Present status and perspective of radiochemical analysis of radionuclides in Nordic countries. J Radioanal Nucl Ccslhemistry 309:1283–1319. https://doi.org/10.1007/s10967-016-4741-5

    Article  CAS  Google Scholar 

  7. Hou X (2007) Radiochemical analysis of radionuclides difficult to measure for waste characterization in decommissioning of nuclear facilities. J Radioanal Nucl Chem 273:43–48. https://doi.org/10.1007/s10967-007-0708-x

    Article  CAS  Google Scholar 

  8. Räty A, Lavonen T, Leskinen A, Likonen J, Postolache C, Fugaru V, Bubueanu G, Lungu C, Bucsa A (2019) Characterization measurements of fluental and graphite in FiR1 TRIGA research reactor decommissioning waste. Nucl Eng Des 353:110198. https://doi.org/10.1016/j.nucengdes.2019.110198

    Article  CAS  Google Scholar 

  9. Croudace IW, Russell BC, Warwick PW (2017) Plasma source mass spectrometry for radioactive waste characterisation in support of nuclear decommissioning: a review. J Anal At Spectrom 32:494–526. https://doi.org/10.1039/c6ja00334f

    Article  CAS  Google Scholar 

  10. Rodríguez M, Piña G, Lara E (2006) Radiochemical analysis of chlorine-36. Czechoslov J Phys 56:211–217. https://doi.org/10.1007/s10582-006-0507-6

    Article  Google Scholar 

  11. Ashton L (2000) Determination of 36Cl and other long-lived radionuclides in decommissioning concrete wastes. Thesis. Loughborough University

  12. Ashton L, Warwick P, Giddings D (1999) The measurement of 36Cl and 129I in concrete wastes. Analyst 124:627–632. https://doi.org/10.1039/a809292c

    Article  CAS  Google Scholar 

  13. Hummel W (2017) Chemistry of selected dose-relevant radionuclides. NAGRA Technical Report 17-05. Wettingen Switzerland

  14. Hou X (2013) Determination of pure beta emitters using LSC for characterization of waste from nuclear decommissioning. In: Advances in liquid scintillation spectrometry (LSC 2013). Barcelona

  15. Warwick P, Reading D, Croudace I (2010) Measurement of 36 Cl and 129 I in decommissioning wastes. In: Triskem international. Southampton

  16. Llopart Babot I, Vasile M, Dobney A, Boden S, Bruggeman M, Leermakers M, Qiao J (2022) On the determination of 36Cl and 129I in solid materials from nuclear decommissioning activities. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-022-08327-9

    Article  Google Scholar 

  17. Fréchou C, Degros JP (2005) Measurement of 36Cl in nuclear wastes and effluents: Validation of a radiochemical protocol with an in-house reference sample. J Radioanal Nucl Chem 263:333–339. https://doi.org/10.1007/s10967-005-0059-4

    Article  Google Scholar 

  18. Rahim MU, Gao X, Wu H (2013) A method for the quantification of chlorine in low-rank solid fuels. Energy Fuels 27:6992–6999. https://doi.org/10.1021/ef401080x

    Article  CAS  Google Scholar 

  19. Rahim MU (2014) Quantification of chlorine in solid fuels and its release behaviour during pyrolysis. Thesis. Chapter 2. Curtin University

  20. Hou X, Østergaard LF, Nielsen SP (2007) Determination of 36Cl in nuclear waste from reactor decommissioning. Anal Chem 79:3126–3134. https://doi.org/10.1021/ac070100o

    Article  PubMed  CAS  Google Scholar 

  21. Roman D, Airey PL (1981) The application of environmental chlorine-36 to hydrology-I. Liquid scintillation counting. Int J Appl Radiat Isot 32:287–290. https://doi.org/10.1016/0020-708x(81)90087-9

    Article  CAS  Google Scholar 

  22. Tolmachyov S, Ura S, Momoshima N, Yamamoto M, Maeda Y (2001) Determination of 36 Cl by liquid scintillation counting from soil collected at the semipalatinsk nuclear test site. J Radioanal Nucl Chem 249:541–545. https://doi.org/10.1023/a:1013281812005

    Article  CAS  Google Scholar 

  23. Itoh M, Watanabe K, Hatakeyama M, Tachibana M (2002) Determination of 36Cl in biological shield concrete using pyrohydrolysis and liquid scintillation counting. Analyst 127:964–966. https://doi.org/10.1039/b200250g

    Article  PubMed  CAS  Google Scholar 

  24. Cecil LDW, Welhan JA, Green JR, Frape SK, Sudicky ER (2000) Use of chlorine-36 to determine regional-scale aquifer dispersivity, eastern Snake River Plain aquifer, Idaho/USA. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 172:679–687. https://doi.org/10.1016/S0168-583X(00)00216-0

    Article  CAS  Google Scholar 

  25. Baxter M, Castle L, Crews HM, Rose M, Garner C, Lappin G, Leong D (2009) A sensitive method for the determination of chlorine-36 in foods using accelerator mass spectrometry. Food Addit Contam Part A 26:139–144. https://doi.org/10.1080/02652030802342489

    Article  CAS  Google Scholar 

  26. Andrews HR, Ball GC, Brown RM, Cornett RJJ, Davies WG, Greiner BF, Imahori Y, Koslowsky VT, McKay J, Milton GM, Milton JCD, Allen KW (1990) Development of the Chalk River program for 36Cl. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 52:243–248. https://doi.org/10.1016/0168-583X(90)90414-P

    Article  Google Scholar 

  27. Nagashima Y, Seki R, Takahashi T, Arai D (2000) Status of the 36Cl AMS system at the University of Tsukuba. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 172:129–133. https://doi.org/10.1016/S0168-583X(00)00208-1

    Article  CAS  Google Scholar 

  28. Pavetich S, Akhmadaliev S, Arnold M, Aumaître G, Bourlès D, Buchriegler J, Golser R, Keddadouche K, Martschini M, Merchel S, Rugel G, Steier P (2014) Interlaboratory study of the ion source memory effect in 36Cl accelerator mass spectrometry. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 329:22–29. https://doi.org/10.1016/j.nimb.2014.02.130

    Article  CAS  Google Scholar 

  29. Karhu H, Kalantar A, Väyrynen IJ, Salmi T, Murzin DY (2003) XPS analysis of chlorine residues in supported Pt and Pd catalysts with low metal loading. Appl Catal A Gen 247:283–294. https://doi.org/10.1016/S0926-860X(03)00098-X

    Article  CAS  Google Scholar 

  30. Halonen I, Tarhanen J, Ruokojärvi P, Tuppurainen K, Ruuskanen J (1995) Effect of catalysts and chlorine source on the formation of organic chlorinated compounds. Chemosphere 30:1261–1273. https://doi.org/10.1016/0045-6535(95)00022-Z

    Article  CAS  Google Scholar 

  31. Dai J, Whitty KJ (2020) Impact of fuel-derived chlorine on CuO-based oxygen carriers for chemical looping with oxygen uncoupling. Fuel 263:116780. https://doi.org/10.1016/j.fuel.2019.116780

    Article  CAS  Google Scholar 

  32. Le Dizès S, Gonze MA (2019) Behavior of 36Cl in agricultural soil-plant systems: a review of transfer processes and modelling approaches. J Environ Radioact 196:82–90. https://doi.org/10.1016/j.jenvrad.2018.10.011

    Article  PubMed  CAS  Google Scholar 

  33. Strömberg B, Zintl F (2008) Release of chlorine from biomass and model compounds at pyrolysis and gasification conditions. Prog Thermochem Biomass Convers 0624:1234–1245. https://doi.org/10.1002/9780470694954.ch102

    Article  Google Scholar 

  34. Warwick PE, Zulauf A, Happel S, Croudace IW (2010) Determination of 36Cl in decommissioning samples using a Pyrolyser furnace and extraction chromatographic separations. In: Triskem international. Southampton

  35. Johansen JM, Jakobsen JG, Frandsen FJ, Glarborg P (2011) Release of K, Cl, and S during pyrolysis and combustion of high-chlorine biomass. Energy Fuels 25:4961–4971. https://doi.org/10.1021/ef201098n

    Article  CAS  Google Scholar 

  36. Galan I, Glasser FP (2015) Chloride in cement. Adv Cem Res 27:63–97. https://doi.org/10.1680/adcr.13.00067

    Article  Google Scholar 

  37. Croudace IW, Warwick PE, Marsh R (2017) A suite of robust radioanalytical techniques for the determination of tritium and other volatile radionuclides in decommissioning wastes and environmental matrices. Fusion Sci Technol 71:290–295. https://doi.org/10.1080/15361055.2017.1293450

    Article  Google Scholar 

  38. Von Lensa W, Vulpius D, Steinmetz HJ, Girke N, Bosbach D, Thomauske B, Banford AW, Bradbury D, Grave MJ, Jones AN, Grambow B, Petit L, Pina G (2013) Treatment and disposal of irradiated graphite and other carbonaceous waste. Carbowaste report. Mol

  39. IUPAC (2014) Compendium of chemical terminology. Version 2.3.3. In: Gold book. pp 135–151

  40. Chen X, Xu Z, Yang F, Zhao H (2019) Flame spray pyrolysis synthesized CuO-TiO2 nanoparticles for catalytic combustion of lean CO. Proc Combust Inst 37:5499–5506. https://doi.org/10.1016/j.proci.2018.05.102

    Article  CAS  Google Scholar 

  41. Juang RS, Lee TS (2002) Oxidative pyrolysis of organic ion exchange resins in the presence of metal oxide catalysts. J Hazard Mater 92:301–314. https://doi.org/10.1016/S0304-3894(02)00025-0

    Article  PubMed  CAS  Google Scholar 

  42. Siwadamrongpong S, Koide M, Matusita K (2004) Prediction of chloride solubility in CaO-Al2O 3-SiO2 glass systems. J Non Cryst Solids 347:114–120. https://doi.org/10.1016/j.jnoncrysol.2004.07.063

    Article  CAS  Google Scholar 

  43. Watanabe N, Tanikawa N, Oikawa T, Inoue S, Fukuyama J (2003) Improved quartz furnace method for chlorine and sulfur determination in municipal solid waste. J Mater Cycles Waste Manag 5:69–76. https://doi.org/10.1007/s101630300011

    Article  CAS  Google Scholar 

  44. Anderson GM, Burnham CW (1967) Reactions of quartz and corundum with aqueous chloride and hydroxide solutions at high temperatures and pressures. Am J Sci 265:12–27. https://doi.org/10.2475/ajs.265.1.12

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I would like to thank ENGIE for sponsoring this project. We would also like to thank the LSC laboratory team at SCK CEN for their support.

Funding

No funding was received to assist with the preparation of this manuscript. The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Llopart-Babot.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Llopart-Babot, I., Vasile, M., Dobney, A. et al. Investigating the 36Cl memory effect in pyrolysis of solid samples from nuclear decommissioning activities. J Radioanal Nucl Chem 331, 4239–4249 (2022). https://doi.org/10.1007/s10967-022-08492-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08492-x

Keywords

Navigation